Chapter 31 (Benson)
E01 $\Delta \phi=B A\left(\cos 120^{\circ}-1\right)=-2.52 \mathrm{mWb}$.
E04 $L=5 \mathrm{~cm}, R=0.2 \Omega, B=0.25 \mathrm{~T} \& I=2 \mathrm{~A}:(\mathbf{a}) \mathcal{E}=B L v, v=I R / B L=32 \mathrm{~m} / \mathrm{s} ; \quad(\mathbf{b})$ $F_{\text {ext }}=I L B=2.5 \times 10^{-2} \mathrm{~N}$.
$\mathrm{E} 07 N_{c}=12, R_{c}=3 \mathrm{~cm}, I_{s}=4.8 \sin (60 \pi t) \mathrm{A}, L_{s}=30 \mathrm{~cm}, N_{s}=240 \& R_{s}=2 \mathrm{~cm} . \mathcal{E}=-N_{c} d \phi / d t=$ $-N_{c} A_{c} d B_{s} / d t=-\mu_{0}\left(N_{s} / L_{s}\right) N_{c} A_{c} d I_{s} / d t$. Find $\mathcal{E}=-30.9 \cos (60 \pi t) \mathrm{mV}$.
E10 $B=0.18 \mathrm{~T}, v=20 \mathrm{~m} / \mathrm{s}, R=1.2 \Omega \& L=0.25 \mathrm{~m}:\left(\right.$ (a) $\mathcal{E}=B L v=0.9 \mathrm{~V}$; (b) $F_{m}=I L B=$ $(\mathcal{E} / R) L B=3.38 \times 10^{-2} \mathrm{~N}(\mathbf{c}) I^{2} R=0.675 \mathrm{~W} ;(\mathrm{d}) F v=0.675 \mathrm{~W}$
E15 (a) $F_{y}=m g-I L B=0$, where $I=\mathcal{E} / R=B L v / R$. Thus $v_{T}=m g R /(B L)^{2} ;(\mathbf{b}) U_{g}=m g y$, $d U_{g} / d t=-m g v_{T}=-(m g / B L)^{2} R . P_{\text {ele }}=I^{2} R=(m g / B L)^{2} R$.
E21 (a) $\mathcal{E}_{0}=N A B \omega=0.201 \mathrm{~V} ;(\mathbf{b}) \tau=\mu B=N I A B=N\left(\mathcal{E}_{0} / R\right) A B=7.15 \times 10^{-4} \mathrm{~N} \cdot \mathrm{~m}$.
E24 $\int \vec{E} \cdot d \vec{l}$ is not zero even though $d \phi_{B} / d t=0$.
E29 $\mathcal{E}=\pi f B R^{2}, f=119 \mathrm{rev} / \mathrm{s}=7150 \mathrm{rpm}$.
E34 (a) $I=N A B \omega /(R+r)=0.014 \omega, P_{R}=I^{2} R=12$, so $\omega=151 \mathrm{rad} / \mathrm{s}$; (b) Maximum $\tau=\mu B=N I A B=8.86 \times 10^{2} \mathrm{~N} \cdot \mathrm{~m}$.
P01 $E_{x}=B v=\left(\mu_{0} I / 2 \pi x\right) v, \Delta V=\int_{d}^{d+L} E_{x} d x=\left(\mu_{0} I v / 2 \pi\right) \ln [(d+L) / d]$.
P 03 (a) $a=d v / d t=-(I L B) / m$, where $I=\mathcal{E} / R=(B L v) / R . \quad d v / d t=-(L B)^{2} v / m R$, so $\int d v / v=-\int(L B)^{2} d t / m R$. With $\tau \equiv m R /(L B)^{2}$, find $v=v_{0} \exp (-t / \tau) ;(\mathbf{b}) d x=$ $v_{0} \exp (-t / \tau) d t$, so $\Delta x=\int d x=v_{0} \tau ;(\mathbf{c})$ Energy loss $=\int P d t=\int\left(\mathcal{E}^{2} / R\right) d t=\left[\left(B L v_{0}\right)^{2} / R\right]$ $\int \exp (-2 t / \tau) d t=\left(B L v_{0}\right)^{2} \tau / 2 R=m v_{0}^{2} / 2$.
(Teacher: Jyh-Shinn Yang, 90.06.06)
P07 $I=I_{0} \sin (\omega t) . \quad d \phi=B d A=\left(\mu_{0} I / 2 \pi x\right)(c d x)$, thus $\phi=\int d \phi=\left(\mu_{0} I c / 2 \pi\right) \ln [(b+a) / a]$; $\mathcal{E}=d \phi / d t=\left(\mu_{0} \omega I_{0} c / 2 \pi\right) \ln [(b+a) / a] \cos (\omega t)$.
P08 (a) $I=\left(\mathcal{E}_{0}-B L v\right) / R$ and $F=I L B=m d v / d t ;(\mathbf{b})$ Set $d v / d t=0$ to have $v_{T}=\mathcal{E}_{0} / B L$.

