Chapter 30 (Benson)
E01 $F=\mu_{0} I_{1} I_{2} b c / 2 \pi a(a+b)$.
E06 $F=\mu_{0} I_{1} I_{2} / 2 \pi d: \quad F_{38}=80(\mu \mathrm{~N} / \mathrm{m}), F_{36}=60(\mu \mathrm{~N} / \mathrm{m}) . \quad F_{x}=\left(F_{38}+F_{36}\right) \cos 60^{0}=$ $70(\mu \mathrm{~N} / \mathrm{m}) ; F_{y}=\left(F_{38}-F_{36}\right) \sin 60^{0}=17.3(\mu \mathrm{~N} / \mathrm{m})$.
$\operatorname{E09} B=\left(\mu_{0} I / 2 a\right) / 2+2\left(\mu_{0} I / 4 \pi a\right)=\left(\mu_{0} I / 2 a\right)(1 / 2+1 / \pi)$, out.
E10 $B=\mu_{0} I / 2 a+\mu_{0} I / 2 \pi a=\left(\mu_{0} I / 2 a\right)(1+1 / \pi)$, out of page.
E11 $B=\mu_{0} I / 4 a-\mu_{0} I / 4 b=\left(\mu_{0} I / 4\right)(1 / a-1 / b)$, into page.
$\mathrm{E} 22 B_{c i r}=\mu_{0} I / 4 a, B_{h}=\left(\mu_{0} I / 8 \pi a\right)\left(2 \sin \alpha_{1}\right), B_{v}=2\left(\mu_{0} I / 4 \pi a\right)\left(\sin \alpha_{2}\right)$, where $\sin \alpha_{1}=1 / \sqrt{5}$, $\sin \alpha_{2}=2 / \sqrt{5} . B=\left(\mu_{0} I / a\right)(1 / 4+1 / \pi \sqrt{5}+1 / 4 \pi \sqrt{5})$.
E23 (a) $B=\left(\mu_{0} I / 4\right)(1 / a+1 / b)=3.14 \times 10^{-5} \mathrm{~T}$;
(b) $\mu=I A=I \pi\left(a^{2}+b^{2}\right)=0.254 \mathrm{~A} \cdot \mathrm{~m}^{2}$.

E27 $\oint \vec{B} \cdot d \vec{l}$ is not zero, even though $I=0$.
E32 \vec{B} is normal to $d \vec{l}$ for the radial sections. For circular arcs:
$\int \vec{B} \cdot d \vec{l}=\left(\mu_{0} I / 2 \pi a\right)(\pi a / 2)+\left(\mu_{0} I / 2 \pi b\right)(3 \pi b / 2)=\mu_{0} I$.
E42 $F_{12}=\mu_{0} I_{1} I_{2} / 2 \pi r . F_{x}=\mu_{0} I^{2} / 2 \pi d-\mu_{0} I^{2} \cos 45^{0} / 2 \pi \sqrt{2} d=\mu_{0} I^{2} / 4 \pi d, F_{y}=-\mu_{0} I^{2} / 2 \pi d-$ $\mu_{0} I^{2} \cos 45^{0} / 2 \pi \sqrt{2} d=-3 \mu_{0} I^{2} / 4 \pi d$. With $d=5 \mathrm{~cm} \& I=8 \mathrm{~A}, \vec{F}=(1.28 \hat{i}-3.84 \hat{j}) \times$ $10^{-4} \mathrm{~N} / \mathrm{m}$.
P01 $I=q / T=q v / 2 \pi R ; m v^{2} / R=q v B$, or $v=q R B / m$; Thus $I=q^{2} B / 2 \pi m B=\mu_{0} I / 2 a=$ $\mu_{0} q^{2} B / 4 \pi m R$.
(Teacher: Jyh-Shinn Yang, 89.06.03)
P02 (a) $B=\left(\mu_{0} N I R^{2} / 2\right)\left(\left[R^{2}+(R / 2+x)^{2}\right]^{-3 / 2}+\left[R^{2}+(R / 2-x)^{2}\right]^{-3 / 2}\right)$;
(b) As $x=0, B=\mu_{0} N I(4 / 5)^{3 / 2}$.

P09 The field due to an infinite cylinder inside it is $\vec{B}=\mu_{0} I \vec{r} / 2 \pi R^{2}$, where \vec{r} is position vector from the axis. For a long, solid wire containing a cavity of radius a can be treated as the superposition of a completely solid wire and a wire of radius a carrying a current in the opposite direction. Therefore, the field in the cavity is $\vec{B}=\left(\mu_{0} I / 2 \pi R^{2}\right)\left(\vec{r}_{1}-\vec{r}_{2}\right)$, where \vec{r}_{1} and \vec{r}_{2} are the position vectors from the axes of the solid wires with radia R and a, respectively. Thus $\vec{B}=\left(\mu_{0} I / 2 \pi R^{2}\right) \vec{d}$, uniform in the cavity.

