Chapter 26 (Benson)
E03 $C=240 \mathrm{pF}, Q=40 \mathrm{nC}, d=0.2 \mathrm{~mm}$. (a) $A=C d / \epsilon_{0}=54.2 \mathrm{~cm}^{2}$; (b) $V=Q / C=167 \mathrm{~V}$; (c) $E=V / d=8.33 \times 10^{5} \mathrm{~V} / \mathrm{m}$.

E07 Effective area is $4 A$, so $C=4 \epsilon_{0} A / d$.
$\mathrm{E} 18 C_{e q}=15 / 41 \mu \mathrm{~F}=0.366 \mu \mathrm{~F}$.
E25 $A=40 \mathrm{~cm}^{2}, d=2.5 \mathrm{~mm}, \mathcal{E}=24 \mathrm{~V}$. (a) $C=14.2 \mathrm{pF}$; (b) $U=4.08 \mathrm{~nJ}$; (c) $E=9.6 \mathrm{kV} / \mathrm{m}$; (d) $u_{E}=408 \mu \mathrm{~J} / \mathrm{m}^{3}$.

E33 (a) $C=\epsilon_{0} A /(d-l) ;(b)$ No change.
E34 $Q=C V, C=\epsilon_{0} A / d ; d^{\prime}=2 d, C^{\prime}=C / 2$. (a) $V^{\prime}=V$; (b) $Q^{\prime}=C^{\prime} V^{\prime}=(C / 2) V=Q / 2$;
(c) $U^{\prime}=C^{\prime} V^{2} / 2=C V^{2} / 4=U / 2$.

E35 $Q=C V, C=\epsilon_{0} A / d ; d^{\prime}=2 d, C^{\prime}=C / 2$.
(a) $V^{\prime}=2 V$; (b) $Q^{\prime}=Q$;
(c) $U^{\prime}=C^{\prime} V^{2} / 2=2 U$.

E36 $U=C V^{2} / 2, U_{5}=200 \mathrm{~mJ}$. (a) $U_{4}=(4 / 5) U_{5}=160 \mathrm{~mJ}$; (b) $C_{36}=2 \mu \mathrm{~F}, U_{36}=(2 / 5) U_{5}=$ $80 \mathrm{~mJ}, U_{3}=(2 / 3) U_{36}=53.3 \mathrm{~mJ}$.
E41 $C=C_{0}\left(\kappa_{1}+\kappa_{2}\right) / 2$.
E42 $C=2 \kappa_{1} \kappa_{2} C_{0} /\left(\kappa_{1}+\kappa_{2}\right)$.
E43 $d=1 \mathrm{~cm}, l=0.3 \mathrm{~cm}, \sigma=2 \mathrm{nC} / \mathrm{m}^{3}, \kappa=5, A=40 \mathrm{~cm}^{2}$. (a) $V=V_{0}[1-(\kappa-1) l / \kappa d]=$ 1.72 V ; (b) $C=C_{0} /[1-(\kappa-1) l / \kappa d]=4.66 \mathrm{pF}$.

E55 (a) $C=\kappa \epsilon_{0} A / d=1.65 \mathrm{nF}$; (b) From Table 26.1, $V_{\max }=1600 \mathrm{~V}$.
E63 $C_{0}=\epsilon_{0} A / d=3.2 \mathrm{nF}, C=\kappa \epsilon_{0} A / 2 d=(\kappa / 2) C_{0}=8.0 \mathrm{nF}$, thus $\kappa=5.0$.
P01 $U=C V^{2} / 2=\kappa C_{0}(E d)^{2} / 2=\kappa \epsilon_{0} E^{2}(A d) / 2$. Thus, $u=U /(A d)=\kappa \epsilon_{0} E^{2} / 2$.
P02 $U_{i}=\epsilon_{0} A V^{2} / 2(d-l) ; U_{f}=\epsilon_{0} A V^{2} / 2 d . W=\Delta U=-\epsilon_{0} A l V^{2} / 2 d(d-l)$.
$\operatorname{P03} Q_{f}=Q_{i} ; U_{i}=\epsilon_{0} A V^{2} / 2(d-l) ; V_{f}=d V /(d-l), U_{f}=C_{f} V_{f}^{2} / 2=\epsilon_{0} A d V^{2} / 2(d-l)^{2}$. $\Delta U=\epsilon_{0} A l V^{2} / 2(d-l)^{2}$.
(Teacher: Jyh-Shinn Yang, 90.05.07)
P05 $1 / C_{e q}=2 / C+1 /\left(C_{e q}+C\right)$, so $2 C_{e q}^{2}+2 C C_{e q}-C^{2}=0$. Find $C_{e q}=0.366 C$.
P08 $Q_{D}=Q, C_{D}=k C, V_{D}=V / k, U=C_{D} V_{D}^{2} / 2=(\kappa C)\left(V / k^{2}\right) / 2=C V^{2} / 2 \kappa$.
P09 $V_{D}=V, C_{D}=k C, U=C_{D} V_{D}^{2} / 2=(\kappa C)\left(V^{2}\right) / 2=\kappa C V^{2} / 2$.
$\mathrm{P} 10 C=2 \pi \epsilon_{0} L / \ln (b / a) \sim \epsilon_{0}(2 \pi L a) /(b-a)=\epsilon_{0} A / d$.
P11 $C=4 \pi \epsilon_{0} R_{1} R_{2} /\left(R_{2}-R_{1}\right) \sim 4 \pi \epsilon_{0} R_{1}^{2} /\left(R_{2}-R_{1}\right)=\epsilon_{0} A / d$.
$\mathrm{P} 13 E_{D}=E_{0}-E_{i}=E_{0} / \kappa, E_{i}=E_{0}(1-1 / \kappa), \sigma \propto E, \sigma_{b}=\sigma_{f}(1-1 / \kappa)$.

