Chapter 24 (Benson)

- E03 Projected area is πR^2 , so $\phi = \pi R^2 E$.
- E11 $E = kQ/R^2 = k(4\pi R^2\sigma)/R^2 = 4\pi k\sigma = \sigma/\epsilon_0$.
- E13 (a) Zero; (b) σ/ϵ_0 .
- E14 (a) $2\sigma/\epsilon_0$; (b) σ/ϵ_0 .
- E17 By Gauss's law, $(2\pi rL)E = (2\pi RL)\sigma/\epsilon_0$, thus $E = R\sigma/(\epsilon_0 r)$. For net field E = 0, need $a\sigma_1 + b\sigma_2 = 0$, i.e. $\sigma_2 = -a\sigma_1/b$.
- E21 (a) kQ/r^2 ; (b) zero.
- E29 $\phi = Q_t / \epsilon_0 = \lambda H / \epsilon_0$.
- E24 (a) To ensure that the electric field is zero within the metal shell, the total charges at the inner and outer surfaces of shell should be +Q and -Q, respectively. Thus $\sigma_1 = -Q/4\pi R_1^2$, $\sigma_2 = +Q/4\pi R_2^2$; (b) kQ/r^2 ; (c) kQ/r^2 ; (d) Yes, σ_2 is still uniform.
- E31 Zero for xy, xz and yz planes, $Q/(24\epsilon_0)$ for each of the other three .
- E32 (a) $E = 2kQ/r^2$; (b) $E = k(2Q 3Q)/r^2 = -kQ/r^2$.
- P01 $4\pi r^2 E = Q/\epsilon_0$: (a) $Q = 4\pi \rho r^3/3$, so $E = \rho r/3\epsilon_0$; (b) $Q = 4\pi \rho R^3/3$, so $E = \rho R^3/3\epsilon_0 r^2$.
- P03 (a) $Q_{net} = Q + (4\pi R_1^2)\sigma = 0$, $Q = -4\pi\sigma R_1^2$; (b) $Q_{net} = 4\pi (R_1^2 R_2^2)\sigma_1$; (c) $4\pi r^2 E = -(4\pi R_2^2)\sigma/\epsilon_0$, thus $E = -\sigma R_2^2/\epsilon_0 r^2$.
- P05 (a) $(2\pi rL)E = (\pi r^2 L\rho)/\epsilon_0$, thus $E = \rho r/2\epsilon_0$; (b) $(2\pi rL)E = (\pi R^2 L\rho)/\epsilon_0$, thus $E = \rho R^2/2\epsilon_0 r$; $E = \rho R/2\epsilon_0$ at r = R. (Teacher: Jyh-Shinn Yang, 90.04.06) P09 (a) kQ/r^2 ; (b) kQ/r^2 .