Chapter 24 (Benson)
E03 Projected area is πR^{2}, so $\phi=\pi R^{2} E$.
E11 $E=k Q / R^{2}=k\left(4 \pi R^{2} \sigma\right) / R^{2}=4 \pi k \sigma=\sigma / \epsilon_{0}$.
E13 (a) Zero; (b) σ / ϵ_{0}.
E14 (a) $2 \sigma / \epsilon_{0}$; (b) σ / ϵ_{0}.
E17 By Gauss's law, $(2 \pi r L) E=(2 \pi R L) \sigma / \epsilon_{0}$, thus $E=R \sigma /\left(\epsilon_{0} r\right)$. For net field $E=0$, need $a \sigma_{1}+b \sigma_{2}=0$, i.e. $\sigma_{2}=-a \sigma_{1} / b$.
E21 (a) $k Q / r^{2} ;(\mathbf{b})$ zero.
E29 $\phi=Q_{t} / \epsilon_{0}=\lambda H / \epsilon_{0}$.
E24 (a) To ensure that the electric field is zero within the metal shell, the total charges at the inner and outer surfaces of shell should be $+Q$ and $-Q$, respectively. Thus $\sigma_{1}=-Q / 4 \pi R_{1}^{2}$, $\sigma_{2}=+Q / 4 \pi R_{2}^{2} ;(\mathbf{b}) k Q / r^{2} ;(\mathbf{c}) k Q / r^{2} ;(\mathbf{d})$ Yes, σ_{2} is still uniform.
E31 Zero for xy, xz and yz planes, $Q /\left(24 \epsilon_{0}\right)$ for each of the other three .
$\operatorname{E32}$ (a) $E=2 k Q / r^{2}$; (b) $E=k(2 Q-3 Q) / r^{2}=-k Q / r^{2}$.
P01 $4 \pi r^{2} E=Q / \epsilon_{0}$: (a) $Q=4 \pi \rho r^{3} / 3$, so $E=\rho r / 3 \epsilon_{0}$; (b) $Q=4 \pi \rho R^{3} / 3$, so $E=\rho R^{3} / 3 \epsilon_{0} r^{2}$.
$\operatorname{P03}$ (a) $Q_{n e t}=Q+\left(4 \pi R_{1}^{2}\right) \sigma=0, Q=-4 \pi \sigma R_{1}^{2} ;(\mathbf{b}) Q_{n e t}=4 \pi\left(R_{1}^{2}-R_{2}^{2}\right) \sigma_{1} ;(\mathbf{c}) 4 \pi r^{2} E=$ $-\left(4 \pi R_{2}^{2}\right) \sigma / \epsilon_{0}$, thus $E=-\sigma R_{2}^{2} / \epsilon_{0} r^{2}$.
$\operatorname{P05}(\mathbf{a})(2 \pi r L) E=\left(\pi r^{2} L \rho\right) / \epsilon_{0}$, thus $E=\rho r / 2 \epsilon_{0} ;(\mathbf{b})(2 \pi r L) E=\left(\pi R^{2} L \rho\right) / \epsilon_{0}$, thus $E=$ $\rho R^{2} / 2 \epsilon_{0} r ; E=\rho R / 2 \epsilon_{0}$ at $r=R . \quad$ (Teacher: Jyh-Shinn Yang, 90.04.06)
$\operatorname{P09}(\mathbf{a}) k Q / r^{2} ;(\mathbf{b}) k Q / r^{2}$.

