Chapter 17 (Benson)

$$
\text { Sound speed } v_{\text {air }}=340 \mathrm{~m} / \mathrm{s} \& \text { density } \rho_{\text {air }}=1.29 \mathrm{~kg} / \mathrm{m}^{3} \text {. }
$$

E01 $\lambda=v / f=3.4 \mathrm{~mm}$.
$\mathbf{E 0 5}$ (a) $v=\sqrt{B / \rho}=1.43 \mathrm{~km} / \mathrm{s} ;$ (b) $\lambda=v / f=1.43 \mathrm{~m}$.
$\mathbf{E 1 3} \lambda=v / f=77.3 \mathrm{~cm} . L_{1}=\lambda / 4=19.3 \mathrm{~cm} ; L_{2}=3 \lambda / 4=58.0 \mathrm{~cm}$.
E14 $f=v / 2 L, 2 f=v(1 / L)$. The slope of the curve $2 f$ vs $1 / L$ is the sound speed. $v=350 \mathrm{~m} / \mathrm{s}$ by least square fitting.
E19 (a) $f=v / 2 L=283 \mathrm{~Hz}$; (b) $L=v / 2 f=51.5 \mathrm{~cm}$.
E22 (a) $f=1200 \mathrm{~Hz}, v_{c}=108 \mathrm{~km} / \mathrm{h}=30 \mathrm{~m} / \mathrm{s} ; f^{\prime}=1200 \times 340 /(340-30)=1320 \mathrm{~Hz} ;(\mathbf{b})$ $f^{\prime}=1200 \times 340 /(340+30)=1100 \mathrm{~Hz}$.
E25 (a) $f=200 \mathrm{~Hz}, v_{s}=40 \mathrm{~m} / \mathrm{s} ; f^{\prime}=200 \times 340 /(340-40)=227 \mathrm{~Hz} ; \lambda^{\prime}=v / f^{\prime}=1.50 \mathrm{~m}$; (b) $v_{l}=40 \mathrm{~m} / \mathrm{s}, f^{\prime}=200 \times 380 / 340=224 \mathrm{~Hz}, \lambda^{\prime}=v^{\prime} / f^{\prime}=380 / 224=1.70 \mathrm{~m} ;(\mathbf{c})$ $v_{s}=20 \mathrm{~m} / \mathrm{s} ; v_{l}=20 \mathrm{~m} / \mathrm{s}, f^{\prime}=200 \times 360 / 320=225 \mathrm{~Hz} ; \lambda^{\prime}=v^{\prime} / f^{\prime}=360 / 225=1.60 \mathrm{~m}$.
$\mathbf{E 2 7}$ (a) $f=400 \mathrm{~Hz}, v_{c}=40 \mathrm{~m} / \mathrm{s}, v_{t}=15 \mathrm{~m} / \mathrm{s}, f_{1}^{\prime}=400 \times(340-15) /(340-40)=433.3 \mathrm{~Hz}$, $f_{2}^{\prime}=400 \times(340+15) /(340+40)=373.7 \mathrm{~Hz} . \quad \Delta f^{\prime}=59.6 \mathrm{~Hz} ; \quad(\mathbf{b}) f_{1}^{\prime}=400 \times(340+$ $15) /(340-40)=473.3 \mathrm{~Hz}, f_{2}^{\prime}=400 \times(340-15) /(340+40)=342.1 \mathrm{~Hz} . \Delta f^{\prime}=131 \mathrm{~Hz}$.
E34 $100=10 \log \left(I / I_{0}\right)=10 \log I+120$, thus $I=10^{-2} \mathrm{~W} / \mathrm{m}^{2}$; $P=I A=\left(10^{-2}\right)\left(4 \pi 40^{2}\right)=201 \mathrm{~W}$.
E47 $F \propto f^{2}$, and F must be decreased, so $F_{2}=(220 / 222) F_{1}=589 \mathrm{~Hz}$.
E49 (a) $1300 / 929=1.40,(n+1) / n=1.4$ gives $n=2.5$, so pipe is not open; but $(n+2) / n=1.4$ gives $n=5$, so pipe is closed. (b) $5 v / 4 L=929$, so $v=334 \mathrm{~m} / \mathrm{s}$.

E50 At wall: $f_{1}=f_{0} v /\left(v-v_{s}\right)=658 \mathrm{~Hz}$. Back at car: $f_{2}=f_{1}\left(v+v_{s}\right) / v=716 \mathrm{~Hz}$.
E56 $f=800 \mathrm{~Hz}, v_{c}=40 \mathrm{~m} / \mathrm{s}, v_{t}=25 \mathrm{~m} / \mathrm{s} . \quad f_{1}^{\prime}=800 \times(340-25) /(340-40)=840 \mathrm{~Hz}$, $f_{2}^{\prime}=800 \times(340+25) /(340+40)=768 \mathrm{~Hz} . \Delta f^{\prime}=-71.6 \mathrm{~Hz}$.
P03 (a) $v \approx 20 \sqrt{T}, d v / d T=20 / 2 \sqrt{T}$, thus $d v / v=d T / 2 T$; (b) $f \propto v, d f / f=d v / v=d T / 2 T$, thus $d f=10(400) / 285=14 \mathrm{~Hz}$, thus $f=414 \mathrm{~Hz} ;(\mathbf{c}) d f / f=10 / 285=3.51 \%$.
P04 (a) Try open: $850 / 607=(n+1) / n$, thus $n=2.5$, so cannot be open. Try closed: $850 / 607=(n+2) / n$, thus $n=5$, i.e. closed. (b) $f_{1}=f_{5} / 5=607 / 5=121.4 \mathrm{~Hz}$.
P05 $H=g t_{1}^{2} / 2, H=340 t_{2}, t_{1}+t_{2}=2.2 \mathrm{~s}$, thus $(H / 4.9)^{1 / 2}+H / 340-2.2=0$. Solve for $H^{1 / 2}$, then find $H=22.3 \mathrm{~m}$.
(Teacher: Jyh-Shinn Yang, 90.03.21)
P09 (a) $f=404 \mathrm{~Hz}$ or 396 Hz ; (b) $L=52 \mathrm{~cm}, \mu=2 \mathrm{~g} / \mathrm{m}, \& f=\sqrt{F / \mu} / 2 L=400 \mathrm{~Hz}$, so $F=(2 L f)^{2} \mu=346 \mathrm{~N} ;(\mathbf{c})$ Now know $f=404 \mathrm{~Hz}, f=v / 2 L$, thus $L=42.1 \mathrm{~cm}$.

