Chapter 18 （Bueche \＆Jerde）

P06 $r=2.0 \mathrm{~m}, v=1.0 \times 10^{5} \mathrm{~m} / \mathrm{s} \& q=1.8$ μ C．$\Delta t=2 \pi r / v=1.26 \times 10^{-4} \mathrm{~s}, I=\Delta q / \Delta t=$ 0.0143 A ．

P19 $\rho=1.70 \times 10^{-8} \Omega \cdot \mathrm{~m}, d=1.024 \mathrm{~mm} \&$ $\ell=20 \mathrm{~m}: \quad$（a）$R=\rho L / A=0.413 \Omega ; \quad$（b） $V=I R=4.95 \mathrm{~V}$ ．

P22 $\rho=10^{-6} \Omega \cdot \mathrm{~m}$ ，diameter $d=1.0 \mathrm{~mm}$ ． $R=\rho L / A, L=R A / \rho=\pi(d / 2)^{2} R / \rho=19.7 \mathrm{~m}$ ．

P24 $\Delta R=R_{0} \alpha \Delta T, \Delta R / R_{0}=0.00450 \times$ $(36.0-15.0)=9.45 \%$ ．

P27 $P=100 \mathrm{~W}, V=120 \mathrm{~V}, P=I V=$ $V^{2} / R: \quad$（a）$I=P / V=0.833 \mathrm{~A} ; \quad$（b）$R=$ $V^{2} / P=144 \Omega$ ．

P29 $P=1500 \mathrm{~W}, V=120 \mathrm{~V}, \alpha=0.0045$ ， $\rho_{0}=5.6 \times 10^{-8} \Omega \mathrm{~m} \& L=4 \mathrm{~m} . R=V^{2} / P=$ 9．60．$\rho=\rho_{0}(1+\alpha \Delta T)=1.64 \times 10^{-7} \Omega \mathrm{~m}$ ， $A=\rho L / R=6.8 \times 10^{-8} \mathrm{~m}^{2}$ ．
$\mathrm{P} 42 \varepsilon=3.0 \mathrm{~V}, R_{v}=4 \Omega \& R_{h}=6 \Omega$ ：
The resistance of right loop，$R_{a}{ }^{-1}=1 / 4+$ $1 / 16=5 / 16, R_{a}=3.2 \Omega, R_{e q}=6+R_{a}+6=$ 15.2Ω ；（b）$I=\varepsilon / R_{e q}=0.197 \mathrm{~A}$ ．

P46 $\quad R_{245}=2.73 \Omega \& R_{362}=1.00 \Omega$ ，so $R_{245} \& R_{362}$ in series 3－Ω gives $R_{A}=6.73$ Ω ．（a）$R_{e q}=R_{A}+9 \Omega=15.73 \Omega$ ；（b）$R_{39}=$ $2.25 \Omega, R_{e q}=R_{A}+R_{39}=8.98 \Omega$ ；（c）The total current draw is $I=12.0 / 8.98=1.34$ （A），$I_{4}=I R_{5} /\left(R_{5}+R_{24}\right)=0.609 \mathrm{~A}$

Direct－Current Circuits

P49 $R=5 \Omega$ ：（a）$R_{a}=(3)(5)=15 \Omega, R_{b}$
$=15 / 4 \Omega, R_{c}=10+R_{b}=55 / 4 \Omega, R_{d}=11 / 3$
$=3.67 \Omega, R_{e q}=13.67 \Omega$ ；（b）$I=V / R_{e q}=$
$0.439 \mathrm{~A} ; \quad(\mathbf{c}) I_{6}=5 I /\left(5+R_{c}\right)=0.117 \mathrm{~A}, I_{1}$
$=I_{6} R_{a} /\left(5+R_{a}\right)=0.088(\mathrm{~A}) ; \quad(\mathbf{d}) I_{2}=0$.
P51 For junction f，$I_{1}+I_{2}+I_{3}=0$ ；For loop abcfa， $12-14 I_{2}-3=0, I_{2}=9 / 14=$ $0.643(\mathrm{~A})$ ；for loop cdefc，$-6+10 I_{1}+3=0$ ， $I_{1}=0.300 \mathrm{~A} . I_{3}=-\left(I_{1}+I_{2}\right)=0.943 \mathrm{~A}$.

P53 $I_{3}=3 \mathrm{~A}$ ．（a）For junction b，$I_{2}=I_{1}+$ $I_{3} \ldots$（1）．For loop abefa，$-3 I_{3}-6 I_{2}+9=0$ ， $6 I_{2}=9-9=0$ ．From（1），$I_{1}=-I_{3}=-3.0 \mathrm{~A}$ ； （b）For loop bcdeb，$-\varepsilon+4 I_{1}+6 I_{2}=0, \varepsilon=$ $4 I_{1}=-12.0 \mathrm{~V}$ ；（c）$V_{4}=4 I_{1}=12.0 \mathrm{~V}$ ．

P55（a）For junction d，$I_{1}+I_{2}+I_{3}=0$ ，or $\mathrm{I} 2=-I_{1}-\mathrm{I} 3 \ldots$（1）；For loop abcda，$-20 I_{1}+$ $6-3+20 I_{2}=0 \ldots$（2）．For loop dcfed， $-20 I_{2}+3-8+15 I_{3}=0 \ldots$（3）．Substitute（1） into（2）and（3），we have $40 I_{1}+20 I_{3}=3$ and $4 I_{1}+7 I_{3}=1$ ．Therefore，$I_{3}=0.140 \mathrm{~A}, I_{1}=$ 0.005 A ，and $I_{2}=-0.145 \mathrm{~A}$ ；（b）$V_{6}=6 I_{3}$ $=0.84 \mathrm{~V}, V_{8}=8 I_{1}=0.04 \mathrm{~V}, V_{9}=9 I_{3}=1.26$
$\mathrm{V}, V_{12}=12 I_{1}=0.06 \mathrm{~V}, V_{20}=20 I_{2}=$ -2.9 V ．

P63 $P_{i}=1200+60+600=1860(\mathrm{~W}), I_{i}$ $=P_{i} / V=15.5 \mathrm{~A} . P_{f}=P_{i}+40.0=1900 \mathrm{~W}, I_{f}$ $=15.83 \mathrm{~A}$ ．So the rating of the fuse is between 15.5 A and 15.8 A ．

