P01 $\ell = v t = (343)(5.50) = 1890 \text{ (m)}$.

P03 For f = 530 Hz, $\lambda = v/f = 343/530 = 0.647$ (m). For f = 180 Hz, $\lambda = v/f = 343/180 = 1.91$ (m). For f = 1550 Hz, $\lambda = v/f = 343/1550 = 0.221$ (m).

P09 $B = \rho v^2 = (1850)(34552) = 2.21 \times 1010$ (Pa).

P11 (a) $v_w = 1482$ m/s, so $t = x/v_w = 2(3.85)/1482$ = 5.20×10⁻³ (s); (b) $f = 1/\tau = 1/t = 1/(5.20 \times 10^{-3}) = 192$ (Hz). For shallower depths the times *t* decreases and so the frequency increases .

P12 Take railroad as iron. $t_{rail} = \ell/v_{iron} = \ell/5130$. $t_{air} = \ell/343$. $t_{air} - t_{rail} = 2.56$. We obtain $\ell = 932$ m.

P19 63.0 = 10 log $(35I/I_0)$ and 57.0 = 10× log $[(35-x)I/I_0]$ give x = 26.

P21 $\beta = 25 \text{ dB}. I = 10^{\beta/10} \times I_0 = 10^{2.5} \times (1.00 \times 10^{-12})$ = 3.16×10⁻¹⁰ (W/m²).

P29 (a) For constructive interference, $L - (L-x) = x = \pm n\lambda$. $\lambda = v/f = 343/3400 = 0.1019$ (m), so $x = \pm 10.0n$ cm; (b) For destructive interference, $L - (L-x) = x = (1/2 \pm n)\lambda$. So $x = (5.00\pm10.0n)$ cm.

P31 Let x be the distance from detector to source at x = 0, then minimum sounds occurs at x - $(4.60-x) = \pm(1/2 + n)\lambda$. So $x = 2.30 \pm (1/4 + n/2)(0.42)$ m with n = 0, 1, 2, 3, ..., 10.

P34 $f_b = |f_1 - f_2| \implies f_2 = f_1 \pm f_b$; $f_2 = 276.3$ or 273.7Hz.

P35 $f_b = |f_1 - f_2| = 321.1 - 320.4 = 0.7$ (Hz).

P41 (a) 747 - 581 = 581 - 415 = 166. But 415/166 is *not* an integer, $f_1 = 166/2 = 83$ (Hz). (b) 415 : 581 : 747 = 5 : 7 : 9, so the tube is that one end is open and the other is closed.

P43 $f \propto v, f_{27}/f_{18} = v_{27}/v_{18}, f_{27} =$ (630)[331.45+(0.610)(27.0)]/[331.45+(0.610)(18.0)] = 640 (Hz). $f_b = 640 - 630 = 10$ (Hz).

P48 At wall, $f_w = f_0 v/(v - v_s) =$ (440)[343/(343-12.5)] = 457 (Hz). The frequency of reflected wave is $f_r = f_w(v + v_L)/v =$ (457)(343+12.5)/343 = 474 (Hz).

P50 $f_1 = f_0 v/(v - v_1) = (550)(343)/(343-32.0) =$ 607 Hz. $f_b = |f_1 - f_2| = 4.4$ Hz . So $f_2 = 607 \pm 4.40$ Hz. For $f_2 = 611.4$ Hz, $611.4 = (550)(343)/(343-v_2)$ leads to $v_2 = 34.1$ m/s and for $f_2 = 602.6$ Hz, we have $v_2 = 29.7$ m/s .

P54 $v_{30} = 331.45 + 0.610(30.0) = 349.75$ (m/s). The frequency of the standing wave on the wire is $f_5 = (5/2L)(F/\mu)^{1/2} = (5/8.00)(340/0.00220)^{1/2} = 246$ (Hz). Since the tube has one open end and one closed, $f = n v_{30}/4L = 246$. Solving this we have n = 3.

P57 $t_1 = (2h/g)^{1/2}$ and $t_2 = h/v$. So $t_1 + t_2 = (2h/g)^{1/2} + h/v = 3.34$ gives h = 50.4 m.

P56 $v_L = 100 \text{ km/h} = 27.8 \text{ m/s and } v_{23} = 345.48$ m/s. $f_A = f_0(v + v_L)/v = 1.08 f$ and $f_B = f_0(v - v_L)/v = 0.920 f$. $f_b = f_A - f_B = 1.08 f_0 - 0.920 f_0 = 20 \text{ Hz}$ gives $f_0 = 125 \text{ Hz}$

Principles of Physics, 6e, NTOU 940407