Chapter 15 （Bueche \＆Jerde）Sound

$\mathrm{P} 01 \quad \ell=v t=(343)(5.50)=1890(\mathrm{~m})$.

P 03 For $f=530 \mathrm{~Hz}, \lambda=v / f=343 / 530=0.647(\mathrm{~m})$ ．
For $f=180 \mathrm{~Hz}, \lambda=v / f=343 / 180=1.91(\mathrm{~m})$ ．For f $=1550 \mathrm{~Hz}, \lambda=v / f=343 / 1550=0.221(\mathrm{~m})$ ．
$\mathrm{P} 09 B=\rho v^{2}=(1850)(34552)=2.21 \times 1010(\mathrm{~Pa})$ ．

P 11 （a）$v_{w}=1482 \mathrm{~m} / \mathrm{s}$ ，so $t=x / v_{w}=2(3.85) / 1482$ $=5.20 \times 10^{-3}(\mathrm{~s}) ;(\mathbf{b}) f=1 / \tau=1 / t=1 /\left(5.20 \times 10^{-3}\right)=$ $192(\mathrm{~Hz})$ ．For shallower depths the times t decreases and so the frequency increases．

P12 Take railroad as iron．$t_{\text {rail }}=\ell / v_{\text {iron }}=\ell / 5130$. $t_{\text {air }}=\ell / 343 . t_{\text {air }}-t_{\text {rail }}=2.56$. We obtain $\ell=932 \mathrm{~m}$.

P19 $63.0=10 \log \left(35 I / I_{0}\right)$ and $57.0=10 \times$ $\log \left[(35-x) I / I_{0}\right]$ give $x=26$ ．

P21 $\beta=25 \mathrm{~dB} . I=10^{\beta 110} \times I_{0}=10^{2.5} \times\left(1.00 \times 10^{-12}\right)$ $=3.16 \times 10^{-10}\left(\mathrm{~W} / \mathrm{m}^{2}\right)$ ．

P29（a）For constructive interference，$L-(L-x)=$ $x= \pm n \lambda . \lambda=v / f=343 / 3400=0.1019(\mathrm{~m})$ ，so $x=$ $\pm 10.0 \mathrm{ncm}$ ；（b）For destructive interference，$L-$ $(L-x)=x=(1 / 2 \pm n) \lambda$. So $\mathrm{x}=(5.00 \pm 10.0 n) \mathrm{cm}$.

P31 Let x be the distance from detector to source at $x=0$ ，then minimum sounds occurs at $x-$ $(4.60-x)= \pm(1 / 2+n) \lambda$ ．So $x=2.30 \pm(1 / 4+$ $n / 2)(0.42) \mathrm{m}$ with $n=0,1,2,3, \ldots, 10$ ．

P34 $f_{b}=\left|f_{1}-f_{2}\right| \Rightarrow f_{2}=f_{1} \pm f_{b} ; f_{2}=276.3$ or 273.7 Hz ．

P35 $f_{b}=\left|f_{1}-f_{2}\right|=321.1-320.4=0.7(\mathrm{~Hz})$.

P41（a） $747-581=581-415=166$ ．But $415 / 166$ is not an integer，$f_{1}=166 / 2=83(\mathrm{~Hz})$ ．（b） $415: 581: 747=5: 7: 9$ ，so the tube is that one end is open and the other is closed．

P43 $f \propto v, f_{27} / f_{18}=v_{27} / v_{18}, f_{27}=$
（630）$[331.45+(0.610)(27.0)] /[331.45+(0.610)(18.0)]$
$=640(\mathrm{~Hz}) . f_{b}=640-630=10(\mathrm{~Hz})$ ．
P48 At wall，$f_{w}=f_{\mathrm{o}} v /\left(v-v_{\mathrm{s}}\right)=$
（440）［343／（343－12．5）］$=457(\mathrm{~Hz})$ ．The frequency of reflected wave is $f_{r}=f_{w}\left(v+v_{L}\right) / v=$ $(457)(343+12.5) / 343=474(\mathrm{~Hz})$.

P50 $f_{1}=f_{\mathrm{o}} v /\left(v-v_{1}\right)=(550)(343) /(343-32.0)=$
$607 \mathrm{~Hz} . f_{b}=\left|f_{1}-f_{2}\right|=4.4 \mathrm{~Hz}$ ．So $f_{2}=607 \pm 4.40 \mathrm{~Hz}$ ．
For $f_{2}=611.4 \mathrm{~Hz}, 611.4=(550)(343) /\left(343-v_{2}\right)$
leads to $v_{2}=34.1 \mathrm{~m} / \mathrm{s}$ and for $f_{2}=602.6 \mathrm{~Hz}$ ，we have $v_{2}=29.7 \mathrm{~m} / \mathrm{s}$ ．

P54 $v_{30}=331.45+0.610(30.0)=349.75(\mathrm{~m} / \mathrm{s})$ ．
The frequency of the standing wave on the wire is f_{5} $=(5 / 2 L)(F / \mu)^{1 / 2}=(5 / 8.00)(340 / 0.00220)^{1 / 2}=246$
(Hz) ．Since the tube has one open end and one closed，$f=n v_{30} / 4 L=246$ ．Solving this we have $n=$ 3 ．

P57 $t_{1}=(2 h / g)^{1 / 2}$ and $t_{2}=h / v$ ．So $t_{1}+t_{2}=(2 h / g)^{1 / 2}$ $+h / v=3.34$ gives $h=50.4 \mathrm{~m}$ ．

P56 $v_{L}=100 \mathrm{~km} / \mathrm{h}=27.8 \mathrm{~m} / \mathrm{s}$ and $v_{23}=345.48$ $\mathrm{m} / \mathrm{s} . f_{A}=f_{\mathrm{o}}\left(v+v_{L}\right) / v=1.08 f$ and $f_{B}=f_{\mathrm{o}}\left(v-v_{L}\right) / v=$ $0.920 f . \quad f_{b}=f_{A}-f_{B}=1.08 f_{\mathrm{o}}-0.920 f_{\mathrm{o}}=20 \mathrm{~Hz}$ gives $f_{\mathrm{o}}=125 \mathrm{~Hz}$

