Chapter 04 （Bueche \＆Jerde）Static Equilibrium

P03 $\vec{F}_{1}: 240 \mathrm{~N}, 30^{\circ}$ relative to x axis；$\vec{F}_{2}: 320 \mathrm{~N}, 120^{\circ}$ relative to x axis；$\vec{F}_{3}: F_{3}, \theta_{3}$ relative to $-y$ axis．By $F_{1} / \sin \left(120^{\circ}+\theta_{3}\right)=F_{2} / \sin \left(150^{\circ}-\theta_{3}\right)=F_{3} / \sin \left(90^{\circ}\right), 4 \sin \theta^{\prime}=3 \sin \theta^{\prime}$ ， where $\theta^{\prime}=\theta+30^{\circ}$ or $\theta^{\prime}=36.9^{\circ}$ ．So $F=400 \mathrm{~N} \& \theta=6.9^{\circ}$ ．

P05 $m_{1} g=m_{2} g=90 \mathrm{~N} . T_{1}=T_{2}=90 \mathrm{~N}$ ．（a）$M=0, T_{3}=T_{2}+T_{1}=180 \mathrm{~N}$ ；（b）$M g=25 \mathrm{~N}$ ， $T_{3}=T_{1}+T_{2}+M g=205 \mathrm{~N}$.
$\mathrm{P} 07 F_{h}=390 \mathrm{~N} \& \theta=70^{\circ} . F \cos \theta=F_{h} \& F \sin \theta=W \Rightarrow W=F_{h} \tan \theta=1072 \mathrm{~N}$.
P08 $F=W \tan \theta, W=F / \tan \theta=240 / \tan 30^{\circ}=416(\mathrm{~N})$.
P09 \＆P10 $F=W \tan \theta, \tan \theta=F / W=310 / 575, \theta=28.3^{\circ} . T=\sqrt{F^{2}+W^{2}}=$ $\sqrt{310^{2}+575^{2}}=653(\mathrm{~N})$ ．

P19 $W_{1}=600 \mathrm{~N} . T_{1}=T_{2}=T_{4}=W_{2} . T_{1}=T_{2}=W_{1} / 2=300 \mathrm{~N}$ and $T_{3}=T_{2}+T_{4}=600 \mathrm{~N}$ ．
P20 $\Sigma F y=3 T-m g=0 \Rightarrow T=m g / 3=540 / 3=180(\mathrm{~N})$.
P41 The critical angle θ_{c} occurs when the center of gravity is directly above the lower contact．Thus we have $\tan \theta_{c}=w / h$ ，where w and h are the width and height，respectively．So，$\theta_{c}=\tan ^{-1}(1 / 2.5)=21.8^{\circ}$ ．

Q ．物體於粗糙斜面上下滑臨界角度 $\theta_{C, s l i p}$ 為何？
P34 $L=2 \mathrm{~m}, F_{L}=260 \mathrm{~N} \& F_{R}=200 \mathrm{~N}$ ．Taking the center of gravity as the pivot point $F_{L} x=F_{R}(L-x), x=L F_{R} /\left(F_{L}+F_{R}\right)=0.870 \mathrm{~m}$.
$\mathrm{P} 42 W=80 \mathrm{~N}, \theta_{L}=60^{\circ} \& \theta_{R}=40^{\circ} . F_{\text {net，}, y}=0: F_{L} \cos \theta_{L}+F_{R} \cos \theta_{R}=$ $W \& F_{\text {net }, x}=0: F_{L} \sin \theta_{L}=F_{R} \sin \theta_{R} \quad \Rightarrow \quad F_{L}=W \sin \theta_{R} / \sin \left(\theta_{L}+\theta_{R}\right)=$ $52.2 \mathrm{~N} \& F_{R}=W \sin \theta_{L} / \sin \left(\theta_{L}+\theta_{R}\right)=70.4 \mathrm{~N}$ ．

P50 Taking the torques about the center of gravity：$F_{1} \ell_{1}=F_{2} \ell_{2}$ ， where ℓ_{1} and ℓ_{2} are the lever arms for F_{1} and F_{2} ，respectively．Using h $=0.4 L \& \theta=37^{\circ}$ ，from the geometry of the figure，$\ell_{1}=(L / 2) \cos \theta+$ $(h / 2) \sin \theta=0.52 L \& \ell_{2}=L \cos \theta-\ell_{1}=0.28 L$ ．Comparing $\ell_{1}>\ell_{2}$ ， therefore，$F_{2}>F_{1}$ ．

P21＊$\quad \tau=\ell F=(r \sin \theta) F \& \ell=5.00 \mathrm{~m} . \tau_{90}=\tau_{50}=0, \tau_{60}=\left[2.50 \sin \left(-90^{\circ}\right)\right](60.0)=-150$ $(\mathrm{N} \cdot \mathrm{m}), \tau_{80}=\left(2.50 \sin 37^{\circ}\right)(80.0)=120(\mathrm{~N} \cdot \mathrm{~m}), \tau_{70}=\left(5.00 \sin 120^{\circ}\right)(70.0)=303(\mathrm{~N} \cdot \mathrm{~m})$ ．

P48＊$R=52.5 \mathrm{~cm}, h=18.0 \mathrm{~cm} \& W=1230 \mathrm{~N}$ ．Taking the torques about the contact point A，$\tau_{c w} \geq \tau_{c c w} \Rightarrow$

$$
F_{\text {min }}(2 R-h)=W \sqrt{R^{2}-(R-h)^{2}} \Rightarrow F_{\text {min }}=559 \mathrm{~N} .
$$

Q ．有否更省力的方向，將圓盤推上平台？

