Chapter 02 （Bueche \＆Jerde）

P11．（a）$v_{a v}=0$ ；（b）$v_{A}=(200-0) / 12=16.7$ $(\mathrm{m} / \mathrm{min}), v_{B}=0$ ，and $v_{C}=(-150-200) /(28-18)$ $=-35.0(\mathrm{~m} / \mathrm{min})$ ．

P22．The bullet traveling initially with $v_{0}=$ $220 \mathrm{~m} / \mathrm{s}$ stops $\left(v_{f}=0\right)$ within $\Delta x=4.33 \times 10^{-2}$ m ．Therefore，from the relation $v_{f}^{2}=v_{0}^{2}+$ $2 a \Delta x$ the acceleration $a=-5.59 \times 10^{5} \mathrm{~m} / \mathrm{s}^{2}$ ． The time taken t is found from $t=x / \underline{v}=$ $\left(4.33 \times 10^{-2}\right) /[(1 / 2)(0+220)]=3.94 \times 10^{-4}(\mathrm{~s})$ ．

P30．In a time t ，the car has traveled $\quad x=$ $(1 / 2) a t^{2}=1.22 t^{2}$ ．The bus has also moved the same distance given by $\quad x=v t=19.6 t$ ． Equating the distance we can solve for t to obtain $t=1.61 \mathrm{~s}$ ．The velocity of the car $v_{\text {car }}$ $=a t=(2.44)(16.1)=39.2(\mathrm{~m} / \mathrm{s})$ ．The distance moved $x=19.6 t=316 \mathrm{~m}$ ．

P34．$v_{0}=23.9 \mathrm{~m} / \mathrm{s}: H=v_{0}^{2} /(2 g)=29.1 \mathrm{~m}$ and $t=v_{0} / g=2.44 \mathrm{~s}$ ．

P36．$t=9.3 \mathrm{~s}$ gives $\quad v_{0}=(1 / 2) g t=45.6 \mathrm{~m} / \mathrm{s}$ ． $H=v_{0}^{2} /(2 g)=106 \mathrm{~m}$ ．

P39．$t_{1}=6.25 \mathrm{~s}, H_{1}=(1 / 2) g t_{1}^{2}=191 \mathrm{~m} ; t_{2}=$ $6.25-0.85=5.40(\mathrm{~s}), H_{2}=(1 / 2) g t^{2}=143 \mathrm{~m}$ ．

P 40 ．For elevator floor $y=(3.35) t$ ；for coin $y=1.25+3.35 t-(1 / 2) g t^{2}$ ．Eliminating y from the two eqs．，$\quad t=[(2)(1.25) / g]^{1 / 2}=0.505(\mathrm{~s})$ ．

P44．$v_{0 x}=24.4 \cos 50.0^{\circ}=15.7 \mathrm{~m} / \mathrm{s} \& v_{0 y}=$

Uniformly Accelerated Motion

P46．Using $y=x \tan \theta_{0}-g x^{2} /\left(2 v_{0}^{2} \cos ^{2} \theta_{0}\right)=$ 2．0，where $x=15 \mathrm{~m}$ and $\theta_{0}=35^{\circ}$ ，we find v_{0} $=13.9 \mathrm{~m} / \mathrm{s}$ ．

P53．$y=h+v_{0} t-(1 / 2) g t^{2}$ ．Set $y=0$ to find $g t^{2}-2 v_{0} t-2 h=0$ ．Solving for t gives $t=$ $\left(v_{0} / g\right)\left(1 \pm\left[1+\left(2 g h / v_{0}^{2}\right)\right]^{1 / 2}\right)$（Taking the positive sign）．

P56．$v_{0}=50.0 \mathrm{~m} / \mathrm{s} . y_{1}=100-(1 / 2) g t^{2} \quad \&$ $y_{2}=v_{0} t-(1 / 2) g t^{2}$ ．Set $y_{1}=y_{2}=H \quad$ to find $t=100 / v_{0}=2.00$（s）（b）$H=80.4 \mathrm{~m}(\mathrm{a}) . v_{2}=$ $v_{0}-g t=30.4 \mathrm{~m} / \mathrm{s}$ ；so the rock will be rising （c）．

P57．Let the distance during the period t_{1} of the acceleration a_{1} be S_{1} and the distance during the period t_{2} of the acceleration a_{2} be S_{2} ．The maximum speed of car is $v_{\max }=$ $\left(2 a_{1} S_{1}\right)^{1 / 2}=\left(2\left|a_{2}\right| S_{2}\right)^{1 / 2}$ ．From $\quad S=S_{1}+S_{2}$ ，we have $S_{1}=\left|a_{2}\right| S /\left(a_{1}+\left|a_{2}\right|\right)=(1 / 2) a_{1} t_{1}^{2}$ and S_{2} $=a_{1} S /\left(a_{1}+\left|a_{2}\right|\right)=(1 / 2)\left|a_{2}\right| t_{2}^{2}$ ．Solve them to find $t_{1}=\left\{2\left|a_{2}\right| S /\left[a_{1}\left(a_{1}+\left|a_{2}\right|\right)\right]\right\}^{1 / 2}$ and $t_{2}=$ $\left\{2 a_{1} S /\left[\left|a_{2}\right|\left(a_{1}+\left|a_{2}\right|\right)\right]\right\}^{1 / 2}$ ．Using $S=0.25 \mathrm{mi}=$ $1320 \mathrm{ft}, a_{1}=24 \mathrm{ft} / \mathrm{s}^{2}$ ，and $a_{2}=-32 \mathrm{ft} / \mathrm{s}^{2}$ leads to $t\left(=t_{1}+t_{2}=\left\{2\left(a_{1}+\left|a_{2}\right|\right) S /\left(a_{1}\left|a_{2}\right|\right)\right\}^{1 / 2}\right)=$ 13.9 s ．

$24.4 \sin 50.0^{\circ}=18.7 \mathrm{~m} / \mathrm{s}$ ．（b）$t=2 v_{0 \mathrm{y}} / g=3.82 \mathrm{~s}$ ；
（a）$R=v_{0 \mathrm{x}} t=60.0 \mathrm{~m}$ ．

