P11. (a) $v_{av} = 0$; (b) $v_A = (200-0)/12 = 16.7$ (m/min), $v_B = 0$, and $v_C = (-150-200)/(28-18)$ $= -35.0 \,(\text{m/min})$.

P22. The bullet traveling initially with $v_0 =$ 220 m/s stops ($v_f = 0$) within $\Delta x = 4.33 \times 10^{-2}$ m. Therefore, from the relation $v_f^2 = v_0^2 + v_0^2$ $2a\Delta x$ the acceleration $a = -5.59 \times 10^5 \text{ m/s}^2$. The time taken *t* is found from t = x/v = $(4.33 \times 10^{-2})/[(\frac{1}{2})(0+220)] = 3.94 \times 10^{-4}$ (s).

P30. In a time *t*, the car has traveled x = $(\frac{1}{2})a t^2 = 1.22t^2$. The bus has also moved the same distance given by x = v t = 19.6 t. Equating the distance we can solve for t to obtain t = 1.61 s. The velocity of the car v_{car} = a t = (2.44)(16.1) = 39.2 (m/s). The distance moved x = 19.6 t = 316 m.

P34. $v_0 = 23.9 \text{ m/s}$: $H = v_0^2/(2g) = 29.1 \text{ m}$ and $t = v_0/g = 2.44$ s.

P36. t = 9.3 s gives $v_0 = (\frac{1}{2})g t = 45.6$ m/s. $H = v_0^2/(2g) = 106 \text{ m}$.

P**39**. $t_1 = 6.25$ s, $H_1 = (\frac{1}{2})g t_1^2 = 191$ m; $t_2 =$ 6.25-0.85 = 5.40 (s), $H_2 = (\frac{1}{2})g t^2 = 143$ m.

P40. For elevator floor y = (3.35)t; for coin $y = 1.25 + 3.35t - (\frac{1}{2})gt^2$. Eliminating y from the two eqs., $t = [(2)(1.25)/g]^{1/2} = 0.505$ (s).

P44. $v_{0x} = 24.4\cos 50.0^\circ = 15.7 \text{ m/s} \& v_{0y} =$ 24.4sin50.0° = 18.7 m/s. (b) $t = 2v_{0y}/g = 3.82$ s; (a) $R = v_{0x} t = 60.0 \text{ m}$.

Chapter 02 (Bueche & Jerde) Uniformly Accelerated Motion

P46. Using $y = x \tan \theta_0 - g x^2 / (2v_0^2 \cos^2 \theta_0) =$ 2.0, where x = 15 m and $\theta_0 = 35^\circ$, we find v_0 = 13.9 m/s.

P53. $y = h + v_0 t - (\frac{1}{2})g t^2$. Set y = 0 to find $g t^2 - 2 v_0 t - 2h = 0$. Solving for t gives t = $(v_0/g)(1 \pm [1+(2gh/v_0^2)]^{1/2})$ (Taking the positive sign).

P56. $v_0 = 50.0 \text{m/s}$. $y_1 = 100 - (\frac{1}{2})gt^2$ & $y_2 = v_0 t - (\frac{1}{2})g t^2$. Set $y_1 = y_2 = H$ to find $t = 100/v_0 = 2.00$ (s) (b) H = 80.4 m (a). $v_2 =$ $v_0 - g t = 30.4$ m/s; so the rock will be rising (c).

P57. Let the distance during the period t_1 of the acceleration a_1 be S_1 and the distance during the period t_2 of the acceleration a_2 be *S*₂. The maximum speed of car is $v_{\text{max}} = (2a_1S_1)^{1/2} = (2|a_2|S_2)^{1/2}$. From $S = S_1 + S_2$, we have $S_1 = |a_2|S/(a_1+|a_2|) = (\frac{1}{2})a_1t_1^2$ and S_2 $= a_1 S/(a_1+|a_2|) = (\frac{1}{2})|a_2|t_2^2$. Solve them to find $t_1 = \{ 2|a_2|S/[a_1(a_1+|a_2|)] \}^{1/2}$ and $t_2 =$ $\{2a_1S/[|a_2|(a_1+|a_2|)]\}^{1/2}$. Using S = 0.25 mi = 1320 ft, $a_1 = 24$ ft/s², and $a_2 = -32$ ft/s² leads to $t (= t_1+t_2 = \{2(a_1+|a_2|)S/(a_1|a_2|)\}^{1/2}) =$ 13.9 s .

