Chapter 01 （Bueche \＆Jerde）Introduction

P28．$a=4.75 \mathrm{~m}, b=5.50 \mathrm{~m} \& c=2.35 \mathrm{~m}$ ．The diagonal length from ceiling corner to the opposite floor corner is $D=\left(a^{2}+b^{2}+c^{2}\right)^{1 / 2}=7.64 \mathrm{~m}$ ．The diagonal length on the floor is $L=\left(a^{2}+b^{2}\right)^{1 / 2}=7.27 \mathrm{~m}$ and $\theta=\cos ^{-1}(L / D)=18.0^{\circ}$ ．

P18．$\quad \vec{R}_{1}=220 \mathrm{~km}\left(-\cos 40^{\circ} \hat{\mathrm{i}}+\sin 40^{\circ} \hat{\mathrm{j}}\right) \& \vec{R}_{2}=30 \mathrm{~km} \hat{\mathrm{j}} . \vec{R}$ $=-\left(\vec{R}_{1}+\vec{R}_{2}\right)=(169 \hat{\mathrm{i}}-171 \hat{\mathrm{j}}) \mathrm{km}$ or $R=240 \mathrm{~km}, 46^{\circ}$ south of east．

P29．$\vec{R}=\vec{A}+\vec{B}: 20=40 \cos 225^{\circ}+B_{x} \& 0=40 \sin 225^{\circ}+B_{y} \Rightarrow B_{x}=48.0 \mathrm{~m} \& B_{y}=28.0 \mathrm{~m}$ ．

P19．$\vec{R}_{1}=780 \mathrm{~km}\left(\cos 47^{\circ} \hat{\mathrm{i}}-\sin 47^{\circ} \hat{\mathrm{j}}\right) \& \vec{R}_{2}=2060 \mathrm{~km} \hat{\mathrm{j}}$ ． $\vec{R}=\left(\vec{R}_{1}+\vec{R}_{2}\right)=(1214 \hat{\mathrm{i}}+758 \hat{\mathrm{j}}) \mathrm{km}$ or $\vec{R}=1431 \mathrm{~km}, 32^{\circ}$ north of east．

P30．$A=49 \mathrm{~cm}, \theta_{A}=42^{\circ} \& B=32 \mathrm{~cm}, \theta_{B}=115^{\circ} . \vec{A}+\vec{B}=(22.9 \hat{\mathrm{i}}+61.8 \hat{\mathrm{j}}) \mathrm{cm}$ and $\vec{B}-\vec{A}=-(49.9 \hat{\mathrm{i}}+3.80 \hat{\mathrm{j}}) \mathrm{cm}$ ．

P32．Choosing east as $+x$ ，north as $+y$ ，and up as $+z$ directions．$A=6.5 \mathrm{ft}, \theta_{A}=-65^{\circ} \& B$ $=2.5 \mathrm{ft}, \theta_{B}=-25^{\circ} . \vec{R}=\vec{A}+\vec{B}: R_{x}=-6.50 \cos 65.0^{\circ}=2.75(\mathrm{ft}), R_{y}=2.50 \cos 25.0^{\circ}=2.30$ (ft) ，and $R_{z}=6.50 \sin 65.0^{\circ}-2.50 \sin 25.0^{\circ}=4.80(\mathrm{ft}) . R=\left(2.75^{2}+2.30^{2}+4.80^{2}\right)^{1 / 2}=6.00(\mathrm{ft})$ ， $\theta_{f}=\tan ^{-1}\left[R_{z} /\left(R_{x}^{2}+R_{y}^{2}\right)\right]^{1 / 2}=53.0^{\circ}$ ，and $\theta_{n}=\tan ^{-1}\left[R_{y} /\left(R_{x}^{2}+R_{z}^{2}\right)\right]=22.6^{\circ}$ ．

P34．Taking east as $+x$ and north as $+y$ ，we have $R=4.3 \mathrm{mi}$ and $R_{x}=$ -1.6 mi ．$R_{y}= \pm\left(4.3^{2}-1.6^{2}\right)^{1 / 2}=4.00(\mathrm{mi}), \theta=\sin ^{-1}\left(R_{x} / R\right\}=21.8^{\circ}$ ．Thus the boat travels either 21.8° west of north or west of south．

