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Chapter 2 Straight Line Motion

77. Assuming the horizontal velocity of the ball is
constant, the horizontal displacement is Ax = VAt,
where Ax is the horizontal distance traveled, At is
the time, and v is the (horizontal) velocity. With v =
160 km/h = 44.4 m/s, we have
At=2% 1840414 ().
At 444

02. Average speed, as opposed to average velocity,
relates to the total distance, as opposed to the net
displacement. The distance D up the hill is, of course,
the same as the distance down the hill, and since the
speed is constant (during each stage of the motion) we
have speed = D/t. Thus, the average speed is

Dup + Ddown _ 2D
tuo +Ldown D/vup + D/ Vyoun

which, after canceling D and plugging in v,, = 40
km/h and vgoun = 60 km/h, yields 48 km/h for the
average speed.

04. With 1 m/s = 3.6 km/h, Huber’s speed is

Vo = (200m)/(6.509's) = 30.72m/s = 110.6 km/h.

Since Whittingham beat Huber by 19.0 km/h, his speed

isv;=110.6+19.0=129.6 (km/h), or 36.00 m/s. Thus,

the time through a distance of 200 m for Whittingham is
At =Ax /vy =(200m)/(36.00m/s) = 5.554s.

05. Using x = 3t — 4t% + t* with SI units understood
is efficient (and is the approach we will use), but if we
wished to make the units explicit we would write
X =(@Bm/s)t— (4m/is?)t? + (L m/s®) 3. We will quote
our answers to one or two significant figures, and
not try to follow the significant figure rules rigor-
ously. (@) Plugging int=1syields x=3-4+1=0.
(b) With t = 2s we obtain x=3(2)-4(2)*+(2)*= -2
(m). (c) With t=3s we have x =0m. (d) Plug-
ging in t=4s gives x = 12m. For later reference, we
also note that the positionatt=0isx=0. (e) The
position at t = 0 is subtracted from the position at t
=4s to find the displacement x=12m. (f) The po-
sition at t=2s is subtracted from the position at t =
4 s to give the displacement x = 14 m. Eq.2-2, then,
leads t0  Vay =AX/At =14/2 =7(m/s). (g) The fi-
gure isshown for horizon- "+

tal axisof0< t<4s. Draw -
a straight line from the
point at (2,-2) to that at |
(4, 12), whose slope give - ;
the answer for part (f). )
17. We use Eq.2-2 for average velocity and Eq.2-4
for instantaneous velocity, and work with distances
in centimeters and times in seconds. (a) We plug
into the given equation for x for t = 2.00s and t =
3.00s and obtain x, = 21.75¢cm and x; = 50.25cm,

respectively. The average velocity during the time
interval 2.00 <t<3.00s s

AX _ 50.25-21.75

Vav= — = ——————,

At 3.00-2.00
which yields v,, = 28.5cm/s. (b) The instantaneous
velocity is v = dx/dt = 4.5t which, at time t = 2.00
s, yields v = (4.5)(2.00)> =18.0 (cm/s). (c) At t =
3.00s, the instantaneous velocity is v = (4.5)(3.00)
= 40.5(cm/s). (d) At t = 2.50s, the instanttaneous
velocity is v = (4.5)(2.50)* = 28.1 (cm/s). (e) Let
tn stand for the moment when the particle is
midway between X, and Xz [that is, when the particle
is at Xm = (X2 +X3)/2 = 36 cm]. Therefore,

Xm=9.75+15t," = t,=2.596s.

Thus, the instantaneous speed at this time is v = 4.5x
(2.596)* = 30.3 (cm/s). (f) The answer to part (a) is
given by the slope of the straight line between t = 2
& t =3 in this x-vs-t plot. ~ {xem
The answers to parts (b), e
(c), (d) and (e) correspond
to the slopes of tangent 401 o)
lines (not shown but easi-
ly imagined) to the curve 20 —
at the appropriate points. 23t
30. The acceleration found from Eg.2-11 (or, sui-
tably interpreted, Eq.2-7) is a = Av / At = (1020
km/h)/(1.4 s) = (1020 m)/(3.6x1.4 s?) = 202.4 m/s°.
In terms of the gravitational acceleration g, this is
expressed as a multiple of 9.8 m/s? as follows:

a=(202.4/9.8)g=20.6g=219¢.
31. We assume the periods of acceleration (duration
t;) and deceleration (duration t;) are periods of
constant a so that Table 2-1 can be used. Taking the
direction of motion to be +x then a; = +1.22 m/s?
and a, = —1.22 m/s%. We use Sl units so the velocity
att=t; is v =305/60 = 5.08 (m/s). (a) We denote Ax
as the distance moved during t;, and use Eq. 2-16:

v2 = vp? + 2a;AX

= Ax =5.08%/[2(1.22)] = 10.59 ~ 10.6 (m).
(b) Using Eq. 2-11, we have

t; = (v—Vo)/a; = 5.08/1.22 = 4.17 (5s).
The deceleration time t, turns out to be the same so
that t; + t, = 8.33s. The distances traveled during t;
and t, are the same so that they total to 2(10.59) =
21.18 (m). This implies that for a distance of 190 —
21.18 = 168.82 (m), the elevator is traveling at
constant velocity. This time of constant velocity
motion is t; = 168.82/5.08 = 33.21 (s).
Therefore, the total time is 8.33 + 33.21 = 41.5 (s).

47. We neglect air resistance for the duration of the
motion (between “launching” and “landing™), so a = —g
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= -9.8m/s® (we take downward to be the —y direc-
tion). We use the equations in Table 2-1 (with Ay
replacing Ax) because this is a = constant motion.
(a) At the highest point the velocity of the baII vani-
shes. Taking yo = 0, we set v = 0 in v* = vp? — 2gy
and solve for the initial velocity: v, = (2gy)Y2 Since
y =50m we find vo = 31m/s. (b) It will be in the
air from the time it leaves the ground until the time
it returns to the ground (y=0). Applying Eq. 2-15 to
the entire motion (the rise and the fall, of total time
t > 0) we have

y:O:Vot—%gtz = t=2Vo/g,

which [using our result from part (a)] produces t =
6.4 s. It is possible to obtain this without using part
(a)’s result; one can find the time just for the rise
(from ground to highest point) from Eq.2-16 and then
double it. (¢)* Sl units are understood in the y and v
graphs shown below. In the interest of saving space,
we do not show the graph of a, which is a horizon-
tal line at —9.8 m/s%.
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56. (a) We use primed variables (except t) with the
first stone, which has zero initial velocity, and un-
primed variables with the second stone (with initial
downward velocity —vo, so that vy is being used for
the initial speed). SI units are used throughout.
Ay’=0(t) 2 gt*, Ay = (-vo)(t-1) - g(t-1)*.
Since the problem indicates Ay’= Ay = —43.9m, we
solve the first equation for t (finding t = 2.99s) and
use this result to solve the second equation for the
initial speed of the second stone:
—4.39 = (—v()(2.99-1) — (1/2)(9.80)(2.99-1)?,

which leads to vo=12.3m/s. »
(b)* The velocity of the *] ,
stones are given by

vy = d(Ay)/dt = —qgt, 2-

vy = d(Ay)/dt = ]

—Vo—g(t-1). .
The plot is shown right: R
50 The full extent of the bolt’s fall is given by y -

= —(%)gt? where y — y, = —90 m (if upwards is cho-

sen as the +y direction). Thus the time for the full
fall is found to be t = 4.29s. The first 80% of its
free fall distance is given by —72 = —gtg,’/2, which
requires time tgy =3.83s. (a) Thus, the final 20%
of its fall takes t — tgo = 0.45s. (b) We can find that
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speed using v=—gtg,. Therefore, |v|=38 m/s, appro-
ximately. (c) Similarly, Vina = —Qtso = |Vfinal| =
42 m/s.

99." We neglect air resistance, which justifies setting
a = —g = -9.8m/s? (taking down as the —y direction) for
the duration of the motion. We are allowed to use
Table 2-1 (with Ay replacing Ax) because this is con-
stant acceleration motion. When something is
thrown straight up and is caught at the level it was
thrown from (with a trajectory similar to that shown in
Fig. 2-25), the time of flight t is half of its time of
ascent t,, which is given by Eq.2-18 with Ay = H
and v = 0 (indicating the maximum point).

H =vta+%gta2 = t,=42H/g.
Writing these in terms of the total time in the air t =
2t,we have H = %gt2 = t=2/2H/g.
We consider two throws, one to height H; for total
time t; and another to height H, for total time t,, and

Hp _gti/8 _t, 2

we set up aratio: —== =(
Hy gtf/8 4

from which we conclude that if t, = 2t; (as is re-

quired by the problem) then H, = 2°H; = 4H;.

101.° Taking the +y direction downward and y, = 0,

we have y = Vot + (¥2)gt®. which (with vq = 0) yields

t = (2y/g)"% (a) For this part of the motion, y = 50

m so that t=4,/2(50)/9.8 =3.2(s).

(b) For this next part of the motion, we note that the
total displacement is y = 100 m. Therefore, the total

time is t=4,/2(100)/9.8 =4.5(s).

The different between this and the answer to part (a)
is the time required to fall through that second 50 m
distance: 4.5-3.2=1.3(s).

Ex.2-1, Prob.2-71 & Ex.2-2, Proh.2-88.

iﬁﬁﬁ*‘&ip 78 prag id = A
w(m ), 5 «?rs 4#((960105 4 :Fd # )2 ATiz AT
# T 457 8 3¢ & 230 km/h (63.9m/s), & % PFiE 300
km/h, 542 %22 4 5E345km, 78 F 90 ~.

o b - a‘:ﬁ R TGV & 3 PFi¢ v i 574.8km
(3572 2), m F apixd prig i 435km.

FE X '§/§fﬁ"xiﬁ B A BARY Lk 0 AR T
LB AP BEINE FEINF %’,Tuirﬁi—k HLH —
o % M;Jm £ o oS8 i R (HIC
=a®° a: FEnRE A 4 1) F HIC>1+: % 5%
15%,1 + k~3+, g ¥ 472 mpinig T,
JL“2d B pm” > § 28R F ga o IR T
24 £ 2 4 (2004 # 4 7 ) 334-337-J2. “The evolution
of transport”, J. H. Ausubel and C. Marchetti, The In-
dustrial Physicist, April/May 2001, pp. 20-24 -

B2t eniFd k

N

Chapter 2, HRw8e, NTOUmMm981006



F'a&tifsgl I'—I’(t) : *
PRE g VAR ML o F 4§ IR
2 AT F ML LA TERER o TS F

LINEEZE )RR RT3 SEAY i K F’B‘mfaél’"*’ Lk R
ﬁvfﬁb#gﬁmaf* ER -2 EER TR

- B RER x=X(), Ax |
Bt >0t ot Yo z, o)
BEE At=t—t > t, o 0 X
AR x=Xt) > X=> x2E X=Xt) > X
A LB 2 L BETAX= X — X X — X,
PR EEERTEE M, @RS AN,

I3o@ B LUH R 87 vy = AX/AL,
(Bepe)id B 5 % 2 PP v =dx/dt,
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Why can a woodpecker survive the
severe impacts with a tree limb?
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Sol. Let the distance during ho b NE
the period t; of the acceleration a; be S; and the dis-
tance during the period t, of the acceleration —a, be
S,. The maximum speed of car is
Vi = 2a:S1 = 2a,S,. From S =S5;+S,, we have
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Sl :i :i a1t12 and SQ = alS :l a2t22_
y+a, 2 a+a, 2
: 28,8
Solve themto find t; =[———— and
2aS a (g +ay) ) S
= L]UZ, SOAt=t+t= [ (a1 +2)) 2.
A (ay +ay) &

Using S = 0.25mi = 1320 ft, a; = 24 ft/s?, and a, =
-32 ft/s? leads to At=13.9s.  cf. Prob.2-29.
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175m, #3548 FAe2 Seik R (Ans ~7.14 m/s* )
Bl k2 19.6 mis i F s & L 3, BBk
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motion,:& #; kinematics,i& & & ; particle, & &, position
i~ % ; origin/zero point, & 2k; positive/negative direction,
I/ e axis (& 18)ih; coordinate, A & vector,w
€ ; displacement, =45 ; distance, FE#; total distance, ",;
FEE/ER 42, time interval,p¥ §E; travel, {7 i&; slope, &L 5
average velocity,-T 32 & ; (instantaneous) velocity, (fm
PF)iE & ; speed,:# & ; speedometer,:# & 4% ; average acce-
leration,T 354 i& & ; (instantaneous) acceleration (g% F¥)
4e3g A& constant acceleration, & 4c:f &, free-fall,p o
T % derivative, ¥ #c/f%c 7 ; tectonic plate, H.; artery,
# #%; whiplash injury,5g #%4= i ; head restraint, &g 4% ;
woodpecker, %k & & ; beak, 5 #k; rat-tat,#* o¥ g#-5 B
# # fanatical, fr#: &9/ » i# ¢, armadillo, L % (7 = 2
A); beat-up, * 3% 7 &7 pickup TePFi% = /g 2Rk,
sprinter,“&§4 £ < ; energy conservation (EC); Niagara
Falls, & 4c 3= A % # ; Porche, % p# #; NASCAR: Nation-
al Association of Stock Car Auto Racing, > Fi& # 1 &
HF € Jai alai,w 4 IR(RE I sRen g p SR B (T
i E4)  elknot=1.852km/h o Roddee
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