Chapter 2 Straight Line Motion

77. Assuming the horizontal velocity of the ball is *constant*, the horizontal displacement is $\Delta x = v \Delta t$, where Δx is the horizontal distance traveled, Δt is the time, and v is the (horizontal) velocity. With v =160 km/h = 44.4 m/s, we have

$$\Delta t = \frac{\Delta x}{\Delta t} = \frac{18.4}{44.4} = 0.414$$
 (s).

02. Average speed, as opposed to average velocity, relates to the total distance, as opposed to the net displacement. The distance D up the hill is, of course, the same as the distance down the hill, and since the speed is constant (during each stage of the motion) we have speed = D/t. Thus, the average speed is

$$\frac{D_{up} + D_{down}}{t_{up} + t_{down}} = \frac{2D}{D / v_{up} + D / v_{down}}$$

which, after canceling D and plugging in $v_{up} = 40$ km/h and $v_{down} = 60$ km/h, yields 48 km/h for the average speed.

04. With 1 m/s = 3.6 km/h, Huber's speed is

 $v_0 = (200 \text{ m})/(6.509 \text{ s}) = 30.72 \text{ m/s} = 110.6 \text{ km/h}.$

Since Whittingham beat Huber by 19.0 km/h, his speed is $v_1 = 110.6 + 19.0 = 129.6$ (km/h), or 36.00 m/s. Thus, the time through a distance of 200 m for Whittingham is

 $\Delta t = \Delta x / v_1 = (200 \text{ m}) / (36.00 \text{ m/s}) = 5.554 \text{ s}.$

05. Using $x = 3t - 4t^2 + t^3$ with SI units understood is efficient (and is the approach we will use), but if we wished to make the units explicit we would write $x = (3 \text{ m/s})t - (4 \text{ m/s}^2)t^2 + (1 \text{ m/s}^3)t^3$. We will quote our answers to one or two significant figures, and not try to follow the significant figure rules rigorously. (a) Plugging in t=1 s yields x=3-4+1=0. (**b**) With t = 2 s we obtain $x = 3(2) - 4(2)^2 + (2)^3 = -2$ (m). (c) With t=3 s we have x=0 m. (d) Plugging in t = 4 s gives x = 12 m. For later reference, we also note that the position at t = 0 is x = 0. (e) The position at t = 0 is subtracted from the position at t =4 s to find the displacement x = 12 m. (f) The position at t=2 s is subtracted from the position at t=4 s to give the displacement x = 14 m. Eq.2-2, then, leads to $v_{av} = \Delta x / \Delta t = 14 / 2 = 7 \text{ (m/s)}$. (g) The figure is shown for horizon-12 x (m) tal axis of $0 \le t \le 4$ s. Draw a straight line from the

point at (2, -2) to that at (4, 12), whose slope give the answer for part (f).

17. We use Eq.2-2 for average velocity and Eq.2-4 for instantaneous velocity, and work with distances in centimeters and times in seconds. (a) We plug into the given equation for x for t = 2.00 s and t =3.00 s and obtain $x_2 = 21.75 \text{ cm}$ and $x_3 = 50.25 \text{ cm}$,

respectively. The average velocity during the time interval $2.00 \le t \le 3.00$ s is

$$v_{av} = \frac{\Delta x}{\Delta t} = \frac{50.25 - 21.75}{3.00 - 2.00},$$

which yields $v_{av} = 28.5 \text{ cm/s}$. (b) The instantaneous velocity is $v = dx/dt = 4.5t^2$, which, at time t = 2.00s, yields $v = (4.5)(2.00)^2 = 18.0$ (cm/s). (c) At t =3.00s, the instantaneous velocity is $v = (4.5)(3.00)^2$ = 40.5 (cm/s). (d) At t = 2.50 s, the instantaneous velocity is $v = (4.5)(2.50)^2 = 28.1$ (cm/s). (e) Let t_m stand for the moment when the particle is midway between x_2 and x_3 [that is, when the particle is at $x_m = (x_2 + x_3)/2 = 36$ cm]. Therefore,

$$x_m = 9.75 + 1.5t_m^3 \implies t_m = 2.596 \text{ s.}$$

Thus, the instantaneous speed at this time is $v = 4.5 \times$ $(2.596)^2 = 30.3$ (cm/s). (f) The answer to part (a) is given by the slope of the straight line between t = 2

& t = 3 in this *x*-vs-*t* plot. The answers to parts (b), (c), (d) and (e) correspond to the slopes of tangent 40lines (not shown but easily imagined) to the curve at the appropriate points.

30. The acceleration found from Eq.2-11 (or, suitably interpreted, Eq.2-7) is $a = \Delta v / \Delta t = (1020)$ km/h/(1.4 s) = (1020 m)/(3.6×1.4 s²) = 202.4 m/s². In terms of the gravitational acceleration g, this is expressed as a multiple of 9.8 m/s^2 as follows:

$$a = (202.4/9.8) g = 20.6 g = 21 g$$
.

31. We assume the periods of acceleration (duration t_1) and deceleration (duration t_2) are periods of constant a so that Table 2-1 can be used. Taking the direction of motion to be +x then $a_1 = +1.22 \text{ m/s}^2$ and $a_2 = -1.22 \text{ m/s}^2$. We use SI units so the velocity at $t = t_1$ is v = 305/60 = 5.08 (m/s). (a) We denote Δx as the distance moved during t_1 , and use Eq. 2-16:

 $v^2 = v_0^2 + 2a_1\Delta x$

$$\Rightarrow \Delta x = 5.08^2 / [2(1.22)] = 10.59 \approx 10.6$$
 (m).
(b) Using Eq. 2-11, we have

 $t_1 = (v - v_0)/a_1 = 5.08/1.22 = 4.17$ (s).

The deceleration time t_2 turns out to be the same so that $t_1 + t_2 = 8.33$ s. The distances traveled during t_1 and t_2 are the same so that they total to 2(10.59) =21.18 (m). This implies that for a distance of 190 -21.18 = 168.82 (m), the elevator is traveling at constant velocity. This time of constant velocity motion is $t_3 = 168.82/5.08 = 33.21$ (s).

Therefore, the total time is 8.33 + 33.21 = 41.5 (s).

47. We neglect air resistance for the duration of the motion (between "launching" and "landing"), so a = -g

= -9.8 m/s^2 (we take downward to be the -y direction). We use the equations in Table 2-1 (with Δy replacing Δx) because this is a = constant motion. (a) At the highest point the velocity of the ball vanishes. Taking $y_0 = 0$, we set v = 0 in $v^2 = v_0^2 - 2gy$ and solve for the initial velocity: $v_0 = (2gy)^{1/2}$. Since y = 50 m we find $v_0 = 31$ m/s. (b) It will be in the air from the time it leaves the ground until the time it returns to the ground (y=0). Applying Eq. 2-15 to the entire motion (the rise and the fall, of total time t > 0) we have

$$y = 0 = v_0 t - \frac{1}{2} g t^2 \implies t = 2v_0/g$$
,

which [using our result from part (a)] produces t = 6.4 s. It is possible to obtain this without using part (a)'s result; one can find the time just for the rise (from ground to highest point) from Eq.2-16 and then double it. (c)* SI units are understood in the *y* and *v* graphs shown below. In the interest of saving space, we do not show the graph of *a*, which is a horizontal line at -9.8 m/s².

56. (a) We use primed variables (except *t*) with the first stone, which has zero initial velocity, and unprimed variables with the second stone (with initial *downward* velocity $-v_0$, so that v_0 is being used for the *initial* speed). SI units are used throughout.

 $\Delta y' = 0(t) - \frac{1}{2}gt^2, \quad \Delta y = (-v_0)(t-1) - \frac{1}{2}g(t-1)^2.$

Since the problem indicates $\Delta y' = \Delta y = -43.9$ m, we solve the first equation for *t* (finding *t* = 2.99 s) and use this result to solve the second equation for the initial speed of the second stone:

$$-4.39 = (-v_0)(2.99-1) - (1/2)(9.80)(2.99-1)^2,$$

which leads to $v_0 = 12.3$ m/s.
v
(b)* The velocity of the
stones are given by
 $v_y' = d(\Delta y')/dt = -gt, 20$
 $v_y = d(\Delta y)/dt = -gt, 20$
The plot is shown right:

50. The full extent of the bolt's fall is given by $y - y_0 = -(\frac{1}{2})gt^2$ where $y - y_0 = -90$ m (if *upwards* is chosen as the +y direction). Thus the time for the full fall is found to be t = 4.29 s. The first 80% of its free fall distance is given by $-72 = -gt_{80}^2/2$, which requires time $t_{80} = 3.83$ s. (a) Thus, the final 20% of its fall takes $t - t_{80} = 0.45$ s. (b) We can find that

speed using $v = -gt_{80}$. Therefore, |v| = 38 m/s, approximately. (c) Similarly, $v_{final} = -gt_{80} \implies |v_{final}| = 42 \text{ m/s}$.

99. We neglect air resistance, which justifies setting $a = -g = -9.8 \text{ m/s}^2$ (taking *down* as the -y direction) for the duration of the motion. We are allowed to use Table 2-1 (with Δy replacing Δx) because this is *constant* acceleration motion. When something is thrown straight *up* and is caught at the level it was thrown from (with a trajectory similar to that shown in Fig. 2-25), the time of flight *t* is half of its time of ascent *t_a*, which is given by Eq.2-18 with $\Delta y = H$ and v = 0 (indicating the maximum point).

$$H = v t_a + \frac{1}{2} g t_a^2 \implies t_a = \sqrt{2H/g} .$$

Writing these in terms of the total time in the air $t = 2t_a$ we have $H = \frac{1}{8}g t^2 \implies t = 2\sqrt{2H/g}$.

We consider two throws, one to height H_1 for total time t_1 and another to height H_2 for total time t_2 , and

we set up a ratio:
$$\frac{H_2}{H_1} = \frac{gt_2^2/8}{gt_1^2/8} = (\frac{t_2}{t_1})^2$$

from which we conclude that if $t_2 = 2t_1$ (as is required by the problem) then $H_2 = 2^2 H_1 = 4H_1$.

101. Taking the +y direction *downward* and $y_0 = 0$, we have $y = v_0 t + (\frac{1}{2})gt^2$. which (with $v_0 = 0$) yields $t = (\frac{2y}{g})^{1/2}$. (a) For this part of the motion, y = 50 m so that $t = \sqrt{2(50)/9.8} = 3.2$ (s).

(b) For this next part of the motion, we note that the total displacement is y = 100 m. Therefore, the total time is $t = \sqrt{2(100)/9.8} = 4.5$ (s).

The different between this and the answer to part (a) is the time required to fall through that second 50 m distance: 4.5 - 3.2 = 1.3 (s).

*Ex.*2-1, *Prob.*2-71 & *Ex.*2-2, *Prob.*2-88.

高速鐵路是指行車時速達二百公里以上的行車系統(電車),台灣高鐵((960105 營運通車)之新幹線電車平均行車速率 230 km/h (63.9 m/s),最高時速 300 km/h,台北至高雄左營距 345 km,行車需 90 分.

•世上最快電車—法國 TGV 最高時速可達 574.8 km (357.2 英里), 而上海磁浮車時速達 435 km.

•頸骨受傷/鞭樣損傷:是車禍常見的症狀,主要因為車禍發生時,頭部及頸部的脊骨就如鞭子鞭動一樣,因突然而來的劇動而受傷。●頭部受傷規範(HIC = <u>a^{2.5}, a</u>: 頭部減速度大小)當HIC > 1 千:受傷機率15%,1 千 k~3 千,嚴重骨折及腦部傷害.

J1."交通與物理", 黃定維及黃偉能, 物理雙月刊, 24卷2期(2004年4月) 334-337。J2. "*The evolution of transport*", J. H. Ausubel and C. Marchetti, *The Industrial Physicist*, April/May 2001, pp. 20-24。

重點整理-第2章 直線運動

宇宙萬物皆在動,但如何動?力學包含運動學與 動力學;運動學是力學之初步。運動學旨在探討 物體如何運動,即描述物體在空間的位置 r 與時 間 t 之關係, r = r(t);只用"<u>空間</u>"及"時間"兩基本 概念,無"<u>力</u>"與"<u>質量</u>"等概念。動力學:探討運動 之起因,物體為什麼作這樣運動。即研討力、質 點(或物體)以及運動物體之間的關係,或物體運 動時所遵守的定律或法則一牛頓運動定律。

一維或直線運動 x = x(t), 時間 $t_1 \rightarrow 0 \Rightarrow t_2 \rightarrow t$, 時距 $\Delta t \equiv t_2 - t_1 \rightarrow t$,

$$\begin{array}{c|c} \Delta x \\ \hline v_0 \\ \hline x_0 \\ \hline x_0 \\ \hline x(t) \\ \hline x \\ \hline \end{array}$$

初位置 $x_1 \equiv x(t_1) \rightarrow x_0 \Rightarrow \mathbf{k}$ 位置 $x_2 \equiv x(t_2) \rightarrow x;$ 位移為"位置之改變量" $\Delta x \equiv x_2 - x_1 \rightarrow x - x_0,$ 只與初位置及**末**位置有關,但與運動細節無關. 平均速度為"單位時間之位移" $v_{av} \equiv \Delta x / \Delta t,$

(瞬時)速度為位置之時變率 v = dx/dt, 速率指(a)速度大小或(b)運動總路程除以時距 初速度 $v_1 \equiv v(t_1) \rightarrow v_0 \Rightarrow 末速度 v_2 \equiv v(t_2) \rightarrow v$; 速度改變量 $\Delta v \equiv v_2 - v_1 \rightarrow v - v_0$,

平均加速度為單位時間之速度改變量 $a_{av} \equiv \Delta v / \Delta t$, (瞬時)加速度為速度之時變率 $a = dv/dt = d^2x/dt^2$, 一維等加速度運動 $a = a_{av} = \text{const.}$,

 $v_{av} = \frac{1}{2}(v_0+v), 即'初速度'與'未速度'之平均值,$ $<math>\Delta v = a\Delta t = at \text{ or } v = v_0 + at,$

$$\Delta x = v_{av} \Delta t = v_0 t + \frac{1}{2} a t^2, \text{ or } x = x_0 + v_0 t + \frac{1}{2} a t^2,$$

$$v^2 - v_0^2 = 2a\Delta x, \text{ or } v^2 = v_0^2 + 2a(x - x_0),$$

Note v=0 表示運動停止或運動方向即將改變(即前後速度變號),該點為折返點;

自由下落運動:設鉛直方向之加速度為定值

 $x \rightarrow y$ and $a \rightarrow a_y = -g (\Delta y > 0: up)$,

<u>地表自由下落加速度</u> g = 9.8 m/s² = 49/5 m/s².
人類跑百米最快需 9.69 s (2009 柏林,牙買加柏特)
1971 (美)阿波羅十五號太空人在月球表面,左手持鐵
鐘,右手拿羽毛,同時釋放,結果鐵錘與羽毛同時著地。•地震時地表加速度以 gal 表示,1 gal = 1 cm/s².
基隆之 g = 9.78974 m/s²。

Why can a woodpecker survive the severe impacts with a tree limb? 為何啄木鳥激烈的撞擊大樹枝還能存活?

解題策略: 1.問題瞭解嘛?2.單位正確嘛?3.答案 合理嘛?4.讀懂圖形。^{Note} d(xⁿ)/dx = nxⁿ⁻¹.

挑戰題〉設直線賽車比賽 總長為*S*,若跑車前段加速 (*a*₁ > 0),而後段減速(*-a*₂ < 0), 試計算跑車所花時間。 *Sol.* Let the distance during

the period t_1 of the acceleration a_1 be S_1 and the distance during the period t_2 of the acceleration $-a_2$ be S_2 . The maximum speed of car is

 $v_{\text{max}}^{2} = 2a_{1}S_{1} = 2a_{2}S_{2}. \text{ From } S = S_{1} + S_{2}, \text{ we have}$ $S_{1} = \frac{a_{2}S}{a_{1} + a_{2}} = \frac{1}{2}a_{1}t_{1}^{2} \text{ and } S_{2} = \frac{a_{1}S}{a_{1} + a_{2}} = \frac{1}{2}a_{2}t_{2}^{2}.$ Solve them to find $t_{1} = [\frac{2a_{2}S}{a_{1}(a_{1} + a_{2})}]^{1/2}$ and $t_{2} = [\frac{2a_{1}S}{a_{2}(a_{1} + a_{2})}]^{1/2}, \text{ so } \Delta t = t_{1} + t_{2} = [\frac{2(a_{1} + a_{2})S}{a_{1}a_{2}}]^{1/2}.$ Using S = 0.25 mi = 1320 ft, $a_{1} = 24$ ft/s², and $a_{2} = -32$ ft/s² leads to $\Delta t = 13.9$ s. *cf. Prob.2-29.*(M. 某 車速 180 km/h 之車子突然煞車, 若煞車距離為

175 m, 試計算煞車過程之加速度. (Ans. -7.14 m/s²) 例.某球以 19.6 m/s 速率從地面往上拋, 試計算該球 可抵達之最大高度(a)及於空中停留時間(b).

motion,運動; kinematics,運動學; particle,質點; position 位置; origin/zero point,原點; positive/negative direction, 正/負的方向; axis (座標)軸; coordinate,座標; vector,向 量; displacement,位移; distance,距離; total distance,總 距離/路程; time interval,時距; travel,行進; slope,斜率; average velocity,平均速度; (instantaneous) velocity,(瞬 時)速度; speed,速率; speedometer,速率錶; average acceleration,平均加速度; (instantaneous) acceleration (瞬時) 加速度; constant acceleration,等加速度, free-fall,自由 下落; derivative,導數/微商; tectonic plate,板塊; artery, 動脈; whiplash injury,頸部扭傷; head restraint,頭枕; woodpecker,啄木鳥; beak,鳥啄; rat-tat,咚咚的聲音,敲 擊聲; fanatical,狂熱的/入迷的; armadillo,犰狳(中南美 產); beat-up,用壞了的; pickup 臨時湊成的/偶然認識的; sprinter,短跑選手; energy conservation (EC); Niagara Falls,尼加拉瓜瀑布; Porche,保時捷; NASCAR: National Association of Stock Car Auto Racing,全國運動汽車 競賽協會; jai alai,回力球(類似手球的室內遊戲,盛行 •1 knot = 1.852 km/h 於拉丁美洲) 備忘錄