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Chapter 2 Straight Line Motion

77. Assuming the horizontal velocity of the ball is
constant, the horizontal displacement is Ax = VAt,
where Ax is the horizontal distance traveled, At is
the time, and v is the (horizontal) velocity. With v =
160 km/h = 44.4 m/s, we have

At=2% 1840414 ().
At 444
04. With 1 m/s = 3.6 km/h, Huber’s speed is
Vo = (200m)/(6.509s) = 30.72 m/s = 110.6 km/h.

Since Whittingham beat Huber by 19.0 km/h, his speed

isv;=110.6+19.0=129.6 (km/h), or 36.00 m/s. Thus,

the time through a distance of 200 m for Whittingham is
= AXx /vy =(200m)/(36.00m/s) = 5.554s.

05. Using x = 3t — 4t + t2 with SI units understood
is efficient (and is the approach we will use), but if we
wished to make the units explicit we would write
x = (3m/s)t — (Am/s®) t? + (1 m/s°) t3. We will quote
our answers to one or two significant figures, and
not try to follow the significant figure rules rigor-
ously.
(b) With t = 2s we obtain x=3(2)-4(2)*+ (2)*= -2
(m). (c) With t=3s we have x =0m. (d) Plug-
ging in t=4s gives x = 12m. For later reference, we
also note that the positionatt=0isx=0. (e) The
position at t = 0 is subtracted from the position at t
=4s to find the displacement x=12m. (f) The po-
sition at t=2s is subtracted from the position at t =
4 s to give the displacement x = 14 m. Eq.2-2, then,
leads to v, =AX/At _14/2 7(m/s). (g) The f|-
gure isshown for horizon- '
tal axisof0< t<4s. Draw 4
a straight line from the
point at (2, -2) to that at
(4,12), whose slope give ¢ !
the answer for part (f). B R
07. Converting to seconds, the running times are t;
= 147.95s and t, = 148.15s, respectively. If the run-
ners were equally fast, then

Savl = Sav2 = I—lltl = Lz/tg .
From this we obtain L, - L;=
(tf ~1)Ly (148 1> >-1)L;=0.00135L; ~ 1.4 m,
1

where we set L; = 1000 m in the last step. Thus, if
L, and L, are no different than about 1.4 m, then
runner 1 is indeed faster than runner 2. However, if
L, is shorter than L, by more than 1.4 m, then runner
2 would actually be faster.

17. We use Eq.2-2 for average velocity and Eq.2-4
for instantaneous velocity, and work with distances
in centimeters and times in seconds. (a) We plug
into the given equation for x for t = 2.00s and t =

(a) Plugging int=1s yields x=3-4+1=0.

3.00s and obtain x, = 21.75cm and x; = 50.25cm,
respectively. The average velocity during the time
interval 2.00<t<3.00sis
AX _ 50.25-21.75
Vav= — = ———F———,
At 3.00-2.00
which yields vy, = 28.5¢cm/s. (b) The instantaneous
velocity is v = dx/dt = 4.5t% which, at time t = 2.00s,
yields v =4.5)(2.00)> =18.0 (cm/s). (c) At t = 3.00s,
the instantaneous velocity is v = (4.5)(3.00)* = 40.5
(cm/s). (d) At t = 2.50s, the instanttaneous velocity
is v = (4.5)(2.50)° = 28.1 (cm/s). (e) Let t, stand
for the moment when the particle is midway be-
tween X, and Xs [that is, when the particle is at x, =
(X2+X3)/2 = 36 cm]. Therefore,
Xm=9.75+15t," = t,=2.596s.
Thus, the instantaneous speed at this time is v = 4.5x
(2.596)°=30.3(cm/s).  (f) The answer to part (a) is
given by the slope of the straight line between t = 2
& t = 3 in this x-vs-t plot. ~ {*™
The answers to parts (b),
(c), (d) and (e) correspond
to the slopes of tangent 4o @
lines (not shown but easi-
ly imagined) to the curve *_—
at the appropriate points. N B
20. (a) Taking derivatives of x(t) = 12t*—2t*, wi
obtain the velocity and the acceleration functions:
V() =24t—6t> and a(t) =24 - 12t
with length in meters and time in seconds. Plugging
in the value t = 3 yields x(3) = 54 m.. (b) Similarly,
plugging in the value t = 3 yields v(3) = 18 m/s.  (c)
Fort=3, a(3) =-12m/s®. (d) At the maximum X,
we must have v = 0; eliminating the t = 0 root, the
velocity equation reveals t =24/6 =4 (s) for the time
of maximum x. Plugging t=4 into the equation for x
leads to x = 64 m for the largest x value reached by
the particle. (e) From (d), we see that the x reaches
its maximum at t = 4.0s. (f) A maximum v re-
quires a = 0, which occurs when t = 24/12 = 2.0 (s).
This, inserted into the velocity equation, gives Vmax
=24 m/s. (g) From (f), we see that the maxi- mum
of v occurs at t = 24/12 = 2.0(s). (h) In part (e),
the particle was (momentarily) motionless at t=4s.
The acceleration at that time is readily found to be
24-12(4) = 24 (m/s%). (i) The average velocity is
defined by Eq.2-2, so we see that the values of x at t
=0 and t = 3s are needed; these are, respectively, x
=0and x =54 m [found in part (a)]. Thus,

Vv = (54-0)/ (3-0) = 18 (m/s).
22. We use Eq.2-2 (average velocity) and Eq.2-7 (av-
erage acceleration). Regarding our coordinate choices,
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the initial position of the man is taken as the origin
and his direction of motion during 5min <t < 10
min is taken to be the +x direction. We also use the
fact that Ax = vAt’ when the velocity is constant
during a time interval At'. (&) The entire interval
considered is At = 8—2 = 6 (min) which is equivalent
to 3605, whereas the sub-interval in which he is mo-
ving is only At' = 8—5 =3 (min) = 180 (s). His posi-
tion at t = 2min is x = 0 and his position at t = 8 min
is X =VAt' =(2.2)(180) = 396 (m). Therefore,
Vav = (396 m —0)/(360s — 0) = 1.10 m/s.

(b) The man is at rest at t = 2 min and has velocity v
= 2.2 m/s at t = 8 min. Thus, keeping the answer to
3 significant figures,

aa = (2.2 m/s —0) /(360 s —0) = 0.00611 m/s°.
(c) Now, the entire interval considered is At=9 — 3
=6 (min) (360 s again), whereas the sub-interval in
which he is moving is At" = 9-5 = 4 (min) = 240 (s).
His position at t = 3min is x = 0 and his position at t
=9minis x = VAt = (2.2)(240) = 528 (m). There-
fore, vy =(528m —0)/(360s —0) =1.47 m/s.
(d) The man is at rest at t = 3min and has velocity v
=2.2m/s at t = 9min. Consequently, a,, = 2.2/360 =
0.00611 (m/s®) just as in part (b). (€) The horizon-
tal line near the bottom
of this x-vs-t graph re- SUU:
presents the man stand- , ©
ingat x=0for0<t<
300 s and the linearly
rising line for 300s <t
< 600 s represents his o 500
constant-velocity
motion. The dotted lines represent the answers to
part (&) and (c) in the sense that their slopes yield
those results. The graph of v-vs-t is not shown here,
but would consist of two horizontal “steps” (one at
v =0 for 0 <t<300s and the next at v=2.2m/s for
300s <t < 600s). The indications of the average
accelerations found in parts (b) and (d) would be
dotted lines connecting the “steps” at the
appropriate t values (the slopes of the dotted lines re-
presenting the values of a,,). Using the above value
for @and h =1.7m, we have r = 5.2x10° m.
29. We separate the motion into two parts, and take
the direction of motion to be positive. In part 1,
the vehicle accelerates from rest to its high- est
speed; we are given vo =0; v=20m/s and a = 2.0
m/s?. In part 2, the vehicle decelerates from its
highest speed to a halt; we are given v, = 20m/s; v
=0 and a = -1.0m/s? (negative because the acelera-
tion vector points opposite to the direction of motion).
(a) From Table 2-1, we find t; (the duration of part
1) from v = vy + at. In this way, 20 = 0+ 2.0t yields

PERESRET G E-PRE
t;=10s. We obtain the duration t, of part 2 from
the same equation. Thus, 0 =20+ (-1.0)t, leads to
t,=20s, and the total is t=1t; +t, =30s.

(b) For part 1, taking xo = 0, we use the equation v?
= Vo’ + 2a(X — Xo) from Table 2-1 and find
Vv 2020400 .
T 220) T
This position is then the initial position for part 2,
so that when the same equation is used in part 2 we
vZ—v§ 0% -202
2a  2(-1.0)
Thus, the final position is x = 300 m. That this is
also the total distance traveled should be evident
(the vehicle did not “backtrack” or reverse its direc-
tion of motion).
30. The acceleration found from Eq.2-11 (or, sui-
tably interpreted, Eq.2-7) is
a=Av/At= (1020 km/h)/(1.4 s)
= (1020 m)/(3.6x1.4 s%) = 202.4 m/s>.
In terms of the gravitational acceleration g, this is
expressed as a multiple of 9.8 m/s? as follows:
a=(202.4/9.8)g=206g=21g.
34. (a) Eq.2-15 is used for part 1 of the trip and Eq.
2-18 is used for part 2:  Ax;=Vo1t; + %al t,?,

where a; = 2.25 m/s? and Ax; = 900/4 m,
AXo=Votp — % aty’,

where a, = -0.75m/s? and Ax, = 3(900)/4m. In ad-
dition, vo1= v, = 0. Solving these equations for the
times and adding the results gives t =t; + t, = 56.6 s.
(b) Eq. 2-16 is used for part 1 of the trip:
V2 = (V0’1)2 + 2a1A%

=0 + 2(2.25)(900/4) = 1013 (m?/s?),
which leads to v = 31.8 m/s for the maximum speed.
99°. We neglect air resistance, which justifies setting
a =—g =—9.8m/s? (taking down as the —y direction) for
the duration of the motion. We are allowed to use
Table 2-1 (with Ay replacing Ax) because this is con-
stant acceleration motion. When something is
thrown straight up and is caught at the level it was
thrown from (with a trajectory similar to that shown in
Fig. 2-25), the time of flight t is half of its time of
ascent t,, which is given by Eq.2-18 with Ay = H
and v = 0 (indicating the maximum point).

H =vta+%gtaz = ta=+2H/g.
Writing these in terms of the total time in the air t =
2t,we have H = %gt2 = t=22H/g.
We consider two throws, one to height H; for total
time t; and another to height H, for total time t,, and
H, _gti/8 _ t,.,

we set up aratio. —= >
Hy gtf/8

obtain x—100 =
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from which we conclude that if t, = 2t; (as is re-
quired by the problem) then H, = 2°H, = 4H;.

105°. We neglect air resistance, which justifies set-
ting a = —g = —9.8m/s? (taking down as the -y di-
rection) for the duration of the stone’s motion. We
are allowed to use Table 2-1 (replacing x by y) be-
cause the ball has constant acceleration motion (and
we choose yp = 0). (&) We apply Eq.2-16 to both
measurements, with Sl units understood.

Vo' =Vo' —20Ye = (3V)°+20(Ya+3) =o',

VAZ=Vo’ —20Ya = V2 +20ya=Vo
We equate the two expressions that each equal vy?
and obtain

%v2+29yA+6g:v2+29yA = Gg:%vz,

which yields v = (8g)"? = 8.85m/s . (b) An object
moving upward at A with speed v = 8.85m/s will
reach a maximum height y —y, = v?/2g = 4.00m
above point A (this is again a consequence of Eq.2-16,
now with the “final” velocity set to zero to indicate the
highest point). Thus, the top of its motion is 1.00m
above point B.
111.° There is no air resistance, which makes it quite
accurate to set a = —g = —-9.8m/s* (where downward
is the —y direction) for the duration of the fall. We
are allowed to use Table 2-1 (replacing x by y) be-
cause this is constant acceleration motion; in fact,
when the acceleration changes (during the process
of catching the ball) we will again assume constant
acceleration conditions; in this case, we have a, =
259 = 245m/s>. (a) The time of fall is given by
Eq.2-15 with vo=0and y = 0. Thus,

t=4/2y, /g =+/2(145)/9.8 = 5.44 (s).
(b) The final velocity for its free-fall (which be-
comes the initial velocity during the catching pro-
cess) is found from Eq.2-16 [other egs. can be used
but they would use the result from part (a)].

Vv =_,/V§ —29(Y - Yo) =—+/20 yo =—53.3 (M/s).

where the negative root is chosen since this is a

downward velocity. Thus, the speed is |v| = 53.3m/s.

(c) For the catching process, the answer to part (b)
plays the role of an initial velocity (vo = -53.3m/s)
and the final velocity must become zero. Using Eq.
2-16, we find
2 _ 2 o 2
Ayz:v Vg =0 (-53.3) _
2a, 2(245)
where the negative value of Ay, signifies that the
distance traveled while arresting its motion is
downward.

(4% T4 327 374+, jyang@mail.ntou.edu.tw, Thanks.)
Ex.2-1, Prob.2-71 & Ex.2-2, Prob.2-88.

~5.80 (m),

BEHRELIRET G B-FRE

112.° We neglect air resistance, which justifies set-
ting a = —g = —9.8m/s’ (taking down as the —y direc-
tion) for the duration of the motion. We are allowed
to use Table 2-1 (replacing x by y) because this is
constant acceleration motion. The ground level is
taken to correspond to y = 0. (a) With y, = h and
Vo replaced with —v,, Eq.2-16 leads to

V=(-%)* = 29 (y —Yo) = V{ + 20N .
The positive root is taken because the problem asks
for the speed (the magnitude of the velocity). (b)
We use the quadratic formula to solve Eq.2-15 for t,
with v, replaced with —vy,

Ay = —vo'[—%g'[2 =t =é (—vo ++/(—vp)? —2gAy ).

where the positive root is chosen to yield t> 0.
With y = 0 and y, = h, this becomes

t:% (yv& +2gh —vy).

(c) If it were thrown upward with that speed from
height h then (in the absence of air friction) it would
return to height h with that same downward speed
and would therefore yield the same final speed (be-
fore hitting the ground) as in part (a). (d) Having to
travel up before it starts its descent certainly re-
quires more time than in part (b). The calculation is
quite similar, however, except for now having +vq
in the equation where we had put in —v, in part (b).
The details follow:

Ayzvot—%gt2 :t:é(vo +4/V4 —20Ay ).

with the positive root again chosen to yield t > 0.
With y =0 and y, = h, we obtain

t=2 (vy +4V2 +2gh).
g

PRI REMFLF 4,
BELS, FEEBEE |, .
(> 0),7 5 fidid (cap < | ™™ i
0), FBpad g o '

Sol. Let the distance during y D .
the period t; of the acceleration a; be S; and the dis-
tance during the period t, of the acceleration —a, be
S;. The maximum speed of car is

Vi = 22;51 = 22,S,. From S=3S;+S,, we have

5 =25 _1at? and S,=—35 _lat?
y+a, 2 a+a, 2
Solve them to find t; =[& 12 and
9as (8 +ay) ) s
a ]1/2,50At=t1+t2= [ (al+a2) ]1/2.
a(a +ay) &y
Using S = 0.25 mi = 1320 ft, a; = 24 ft/s*, and a, =

—32 ft/s® leads to At = 13.9 s.

=
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BErFt >0t ot Yo z, o)
BFEE At=t,—t; > t,

A7l X =Xt) > X = R mE X=X{t) > X

Xq x(f) x

TR LR 2B ETAX= X — Xg 2 X — X,

FPEAEEZ ARG M, 2@ os ghl.

Tia R ZYH R 2 287 vy = AXIAL,
(BPF)# R 5 =% 2 % F v=dx/dt,

#FH @ k)& (b)s; B SLBLAR IS 1 PE RE

AER V=) Vo kRiER a=V(h) oV

%ﬁ)iie;é@gAvag—vl—)v—vo,

Tiadesg B L H P23 R %E ay=AV/IAL,

(BepF)4e st B 5 z\E—:LFﬁ%_’;‘ a = dv/dt = d3/dt?,
- BE4 Y RIEFEH a=a, =const.,

Vay= = (VotV), TAif RTERERTL T00E
Av=aAt=atorv=yv,+at,

AX = VAt = Vot + %atz, OF X = Xg + Vot + %atz,

vZ —v® = 2aAx, or vZ = vo2 + 2a(X—Xo),

NOe = 0 4 T 1B B0 TR E A T (T
wis ik R FEL), 2% 5 TE S,
Pd TEERIREE e ERFTE

X —yand a— a,=-g (Ay > 0: up),
¥&pd TEAH R g=98m/s’=49/5m/s.

o3 ;afﬂ’ﬂ* % 4cig B2 gal % 77, 1gal = 1cm/s®.

#Ea | oF 37 9.695 (2009 a4k, 7 § 4 dp 4F)
47%% B4 A2 FEAEY) 5~6 4. e5E F % MR
B EBAEE Levpsk o A RFLBARF A
SR EIETE %f&rﬁ—atﬁiﬁﬂ ¥ mRRa ke
WlEm g o ekl 2 g= 9.78974m/s*
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Why can a woodpecker survive the
severe impacts with a tree limb?
RS Y L T RS
FRE R LIPER AR P2 /e 238 %
& T8 2 4.3 WA o " d(x")/dx = nx"
QF FEbtk PFrxau B 2 +18m/s, 2.4s {63 &
BL30mlseiipk (03 . Pl A 24s ) T e

teif B S (@) +10 m/s%; (b) +20 m/s?; (c) —10 m/s?;
(d)—20m/s®. Q.2 i % 180km/h 2. & F R AR &

B OEATHFEH L 175m, A0 h FARZ 4o
B .(Ans.-7.14m/s?) Q.3 ¥ % i g=9.80 m/s%,
Ikt 33.6m B A MiE F 35.0m/s 4E
Yo, BP R EHRVREZEAFR@F L B
%P5 (D). [Ans. (62.5+33.6) m & 8.00]

motion,i& #-; kinematics,i& & & ; particle, i 2k; position
i~ ¥ ; origin/zero point, & &; positive/negative direction,
/g e e axis (B 1)ih; coordinate, A {&; vector,
+ ; displacement, i~ #5; distance,fE&g; total distance, i,
BEAE/FL A% time interval,p¥ BE; travel, {7 i&; slope, &L & ;
average velocity,-* #5:# & ; (instantaneous) velocity,(g#
PF)ik B ; speed,:# & ; speedometer,i# & 4% ; average acce-
leration,T 354c i & ; (instantaneous) acceleration (g% F¥)
4vig B constant acceleration, % 4c:# &, free-fall,p ¢
T 3% derivative, ¥ #c/#c 7 ; tectonic plate, 5 5i.; artery,
# *%; whiplash injury,5g #%4= i ; head restraint, g +%;
woodpecker, 7k & % ; beak, 5 #&; rat-tat,«* % B4 @
# #- fanatical, fr# &9/ » 3 & armadillo, . % (7 & %
2 ); beat-up, * 3% 7 & pickup TeRF % = /i 2RIk e
sprinter,7&4 1% < ; energy conservation (EC); Niagara
Falls, = 4c 3> A % % ; Porche, i%F* #_ NASCAR: Nation-
al Association of Stock Car Auto Racing, > Fi& % &
B g Jai alai,w 4 R (RS sk po SN BT
g7 ) elknot=1.852km/h

o B if 4B B gjﬁ 78 g 'p” DN VR TTE -
w(T ) e «%rs 4#((960105 4 18l & )2 FTiRA T
B T 58 ¢ % 230 km/h (63.9 m/s), ﬁxrﬁ PF:# 300
km/h, 542 %22 4 5E345km, 78 F 90 ~.

o | §xf TE 2R TGV & 3 ]33!:*3\—’ i# 574.8km
(3572 ®2), m tiagiyd prigid 435 km. 1971
(%) A.E’a—L; Bz ARtia o 2L IFEeE
LA ERL e SR AEN LS R R o
J1“2 i 4387 > F 2 8% F i > 32 EY 7
24 % 2 #7 (2004 &£ 4 7 ) 334-337-J2. “The evolution
of transport”, J. H. Ausubel and C. Marchetti, The In-
dustrial Physicist, April/May 2001, pp. 20-24 -
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