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Chapter 30  Induction and Inductance
04. The resistance of the loop is  R = ρL / A = 
(1.69×10−8)π(0.10) / [4π(2.5×10−3)2] = 1.1×10−2 (Ω). 
We use i = |ε| / R = |dΦB/dt| / R = (πr2/R)|dB/dt|. 
Thus   dB/dt = iR / πr2  

= (10)(1.1×10−2) / π (0.05)2 = 1.4 (T/s). 
06. Using Faraday’s law, the induced emf is 
ε = −dΦB/dt = −d(BA) / dt = −BdA/dt = −Bd(πr2)/dt = 
−2πrBdr/dt = −2π(0.12)(0.800)(−0.750) = 0.452 (V). 

08. The field (due to the current in the straight wire) 
is out-of-the-page in the upper half of the circle and 
is into the page in the lower half of the circle, pro- 
ducing zero net flux, at any time. There is no 
induced current in the circle. 
16. To have an induced emf, the magnetic field 
must be perpendicular (or have a nonzero compo- nent 
perpendicular) to the coil, and must be changing with 
time. (a) For B = (4.00×10−2 T/m)yk, dB/dt = 0 and 
hence ε = 0. (b) None. (c) For B = (6.00×10−2 T/s)tk, 
ε = −dΦB/dt = −AdB/dt = (0.400 × 0.250)(0.0600) = 
−6.00 (mV), or |ε| = 6.00 mV. (d) Clockwise; (e) 
For B = (8.00×10−2 T/s)yt k, 

ΦB = (0.400)(0.0800t)∫ydy = 1.00×10−3t, 
in SI units. The induced emf is ε = −dΦB /dt = −1.00 
(mV), or |ε| = 1.00 mV. (f) Clockwise. (g) ΦB = 0 ⇒ 
ε = 0. (h) None. (i) ΦB = 0 ⇒ ε = 0. (j) None. 
19. (a) In the region of the smaller loop the 
magnetic field produced by the larger loop may be 
taken to be uniform and equal to its value at the 
center of the smaller loop, on the axis. Eq. 29-27, 
with z = x (taken to be much greater than R), gives 

B = (μ0iR2 / 2x3)i, 
where the +x direction is upward in Fig. 30-47. The 
magnetic flux through the smaller loop is, to a good 
approximation, the product of this field and the area 
(πr2) of the smaller loop: 

ΦB = (μ0iR2 / 2x3)(πr2) = πμ0i r2R2/2x3. 
(b) The emf is given by Faraday’s law: 

ε = −dΦB / dt = −(πμ0i r2R2 / 2)d(x−3)/dt  
= (πμ0i r2R2 / 2)(3x−4)dx/dt = 3πμ0i r2R2v / 2x4. 

(c) As the smaller loop moves upward, the flux 
through it decreases, and we have a situation like 
that shown in Fig. 30-5(b). The induced current will 
be directed so as to produce a magnetic field that is 
upward through the smaller loop, in the same direc- 
tion as the field of the larger loop. It will be coun- 
terclockwise as viewed from above, in the same 
direction as the current in the larger loop. 
24. (a) We assume the flux is entirely due to the 
field generated by the long straight wire (which is 
given by Eq. 29-17). We integrate according to Eq. 
30-1, not worrying about the possibility of an 
overall minus sign since we are asked to find the 

absolute value of the flux. 
|ΦB| = ∫r−b/2 r+b/2(μ0i/2πr)(adr) 

= (μ0ia/2π)ln[(r+b/2)/(r−b/2)]. 
When r = 1.5b, we have  
ΦB = (2×10−7)(4.7)(0.022)ln(2.0) = 1.4×10−8 (Wb). 

(b) Implementing Faraday’s law involves taking a 
derivative of the flux in part (a), and recognizing 
that dr/dt = v. The magnitude of the induced emf 
divided by the loop resistance then gives the indu- 
ced current: 

iloop = |ε / R| = (μ0ia/2π)(d/dt)ln[(r+b/2)/(r−b/2)] 
= μ0iabv / 2πR(r2−b2/4) = (2×10−7)(4.7)(0.022) 
(0.0080)(3.2×10−3) / (4.0×10−4) / (2×0.00802)  

= 1.5×10−5 (A). 
26. Noting that |ΔB| = B, we find the thermal energy 
is     PthermalΔt = ε2Δt / R = R−1(−dΦB/dt)2Δt  

= R−1(−AΔB/Δt)2Δt = A2B2 / RΔt = 
= (2.00×10−4)2(17.0×10−6)2/(5.21×10−6) 

/(2.96×10−3) = 7.50×10−10 (J). 
29. (a) Eq. 30-8 leads to 

ε = BLv = (0.350)(0.250)(0.550) = 0.0481 (V). 
(b) By Ohm’s law, the induced current is i = 0.0481 
V/18.0 Ω = 0.00267 A. By Lenz’s law, the current is 
clockwise in Fig. 30-52. 
(c) Eq. 26-22 leads to P = i2R = 0.000129 W. 
39. Since  NΦB = Li, we obtain  ΦB = Li / N = 

(8.0×10−3)(5.0×10−3) / 400 = 1.0×10−7 (Wb). 
43. Since ε = –L(di/dt), we may obtain the desired 
induced emf by setting di/dt = –ε / L = –(60 V) /  
(12 H) = –5.0 A/s, or |di/dt| = 5.0 A/s. We might, for 
example, uniformly reduce the current from 2.0 A 
to zero in 40 ms. 
48. The steady state value of the current is also its 
maximum value, ε/R, which we denote as im. We are 
told that i = im/3 at t0 = 5.00 s. Eq. 30-41 becomes 
 i = im[1–exp(–t0/τL)] which leads to  

τL = –t0 / ln(1–i/im) = –5.00 s / ln(2/3) = 12.3 s. 
52. (a) The inductor prevents a fast build-up of the 
current through it, so immediately after the switch 
is closed, the current in the inductor is zero. It fol- 
lows that 

i1 = ε / (R1+R2) = 100 / (10.0+20.0) = 3.33 (A). 
(b) i2 = i1 = 3.33 A.  (c) After a suitably long time, 
the current reaches steady state. Then, the emf 
across the inductor is zero, and we may imagine it 
replaced by a wire. The current in R3 is i1 – i2. Kir- 
chhoff’s loop rule gives 

ε – i1R1 – i2R2 = 0 and ε – i1 R1 –(i1–i2)R3 = 0. 
We solve these simultaneously for i1 and i2, and find  
i1 = ε(R2+R3)/(R1R2+R2R3+R3R1) = (100)(10.0+20.0) 

/(10.0×20.0+20.0×30.0+30.0×10.0) = 4.55 (A). 
(d) and 
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i2 = εR3 /(R1R2+R2R3+R3R1) = (100)(30.0) / 
(10.0×20.0+20.0×30.0+30.0×10.0) = 2.73 (A). 

(e) The left-hand branch is now broken. We take the 
current (immediately) as zero in that branch when the 
switch is opened (that is, i1 = 0). (f) The current in 
R3 changes less rapidly because there is an induc- 
tor in its branch. In fact, immediately after the 
switch is opened it has the same value that it had 
before the switch was opened. That value is 4.55A – 
2.73A = 1.82 A. The current in R2 is the same but in 
the opposite direction as that in R3, i.e., i2 = –1.82 A.  
A long time later after the switch is reopened, there 
are no longer any sources of emf in the circuit, so 
all currents eventually drop to zero. Thus, (g) i1 = 0, 
and (h) i2 = 0. 
63. (a) At any point the magnetic energy density is 
given by uB = B2/2μ0, where B is the magnitude of 
the magnetic field at that point. Inside a solenoid B 
= μ0ni, where n, for the solenoid of this Pb., is (950 
turns)/(0.850 m) = 1.118×103 m–1. The magnetic 
energy density is     uB = (½)μ0n2i2 = 

(½)(4π×10−7)(1.118×103)2(6.60)2 = 3.42 (J/m3). 
(b) Since the magnetic field is uniform inside an 
ideal solenoid, the total energy stored in the field is 
UB = uBVs, where Vs is the volume of the solenoid. 
Vs is calculated as the product of the cross-sectional 
area and the length. Thus 

UB = (3.42)(17.0×10−4)(0.850) = 4.94×10−2 (J). 
66. (a) The magnitude of the magnetic field at the 
center of the loop, using Eq. 29-9, is 

B = μ0i/2R= (4π×10−7)(100) / 
(2×50×10−3) = 1.3×10−3 T. 

(b) The energy per unit volume in the immediate 
vicinity of the center of the loop is 
uB = B2/2μ0 = (1.3×10−3)2 / (2×4π×10−7) = 0.63 (J/m3). 
45. (a) Voltage is proportional to inductance (by Eq. 
30-35) just as, for resistors, it is proportional to resi- 
stance. Since the (independent) voltages for series 
elements add (V1+V2), then inductances in series 
must add, Leq = L1 + L2, just as was the case for 
resistances. Note that to ensure the independence of 
the voltage values, it is important that the inductors 
not be too close together (the related topic of mutual 
inductance is treated in §30-12). The requirement is 
that magnetic field lines from one inductor should 
not have significant presence in any other.  (b) Just 
as with resistors,  Leq = Σk Lk. 
73. The flux over the loop cross section due to the 
current i in the wire is given by 

Φ = drB
ba
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With N = 100, a = 1.0 cm, b = 8.0 cm and l = 30 cm, 

we have M = 1.3×10−5 H. 
重點整理－第 30 章 感應與電感 

磁通量  磁場與面積向量之純量乘積，正比於通

過截面之磁場線數；單位: 韋伯 Wb (≡ T m2)； 
ΦB = ∫ B dA = ∫ BdAcosθ； 

ΦB = B A = BAcosθ (均勻磁場)。 
Note a.通過封閉曲面之磁通量必為零；b.磁場可由

磁通量除以截面積得之, 即[B] = T = Wb/m2。c.
磁通量計算類似電通量之計算。 
法拉第感應定律  ε =

dt
d Bφ− , 沿著任意封閉路徑 

之感應電動勢等於通過此路徑所包圍截面之磁

通量時變率之負值。改變1.磁場強度; 2.線圈面積; 
3.磁場與面積向量之夾角皆可改變磁通量。 
冷次定律  感應電動勢(電流)之效應乃是阻止產

生此磁通量之改變。此定律易於判斷感應電流之

方向或感應電動勢之極性。 
電動勢與感應電場 ε = ∫ ⋅ l

vv
dE =

dt
d Bφ− .  

Note 通常感應電場之封閉路徑線積分值不為零, 但靜

電場的封閉路徑線積分值必為零。 
電感器  具有特定電感值之元件，電路符號 
電感為 L =

i
N Bφ , 單位: H (≡ T m2/A)。 

螺線管 L = μ0n2lA, n:線圈密度,A:截面積, l:長度。 
自感應  線圈自身電流隨時變化而於其上誘發

一電動勢之現象,  εL =
dt
diL− . 

RL 串聯電路  電感時間常數τL ≡ L / R；a.建立電

流時，i(t) = (ε/R)[1−exp(−t/τL)]，b.電流衰減時，

i(t) = i0exp(−t/τL)。Note a.順著電流跨過電感器, ΔV = 

+εL = −Ldi/dt; b.電流穩定時, 電感器短路(εL = 0, di/dt 

= 0), c.電流剛流通時, 電感器斷路(i = 0, RL → ∞). 
磁能及磁能密度  UB =

2
1 Li2, uB =

02
1
μ

B2. 

互感應  線圈 1 電流隨時變化而於其旁線圈 2 上

誘發一電動勢之現象，M (= M12 = M21)為互電感， 
ε2 = −M

dt
di1 , ε1 = −M

dt
di2 . M 單位: H. 

磁場如何引起燒傷？ 
induction 感應; Faraday’s law of induction 法拉第感應

定律; Lanz’s law 冷次定律; induced current/emf/electric 
field 感應電流/電動勢/電場; eddy current 渦電流; mag- 
netic flux 磁通量; magnetic flux linkage 磁通匝連數; 
weber (Wb)韋伯; inductance 電感; henry (H)亨利; self-/ 
mutual induction 自/互感應; inductor 電感器; MRI 磁振

造影;burn 燃燒,燒傷;pickup 拾音器 
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46. (a) Voltage is proportional to inductance (by Eq. 
30-35) just as, for resistors, it is proportional to resi- 
stance. Now, the (independent) voltages for parallel 
elements are equal (V1= V2), and the currents (which 
are generally functions of time) add (i1(t) + i2(t) = i(t)). 
This leads to the Eq. 27-21 for resistors. We note 
that this condition on the currents implies 

di1(t)/dt + di2(t)/dt = di(t)/dt. 
Thus, although the inductance equation, Eq. 30-35 
involves the rate of change of current, as opposed to 
current itself, the conditions that led to the parallel 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

resistor formula also applies to inductors.  
Therefore,      Leq

−1 = L1
−1 + L2

−1. 
Note that to ensure the independence of the voltage 
values, it is important that the inductors not be too 
close together (the related topic of mutual inductan- 
ce is treated in §30-12). The requirement is that the 
field of one inductor should not have significant 
influence (or “coupling’’) in the next. (b) Just as 
with resistors, Leq

−1 = Σk Lk
−1. 

Ex.5-2: Pb.30-42. 
•備忘錄• 


