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Chapter 29  Magnetic Fields Due to Currents
02. The straight segment of the wire produces no 
magnetic field at C (see the straight sections discus- 
sion in S.P. 29-1). Also, the magnetic fields from the 
two semi-circular loops cancel at C (by symmetry). 
Therefore, BC = 0. 
55. (a) We find the magnetic field by superposing 
the results of two semi-infinite wires (Eq. 29-7) and 
a semi-circular arc (Eq. 29-9 with φ = π). The direc- 
tion of B is out of the page, as can be checked by 
referring to Fig. 29-6(c). The magnitude of B at 
point a is therefore 
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With i = 10 A and R = 0.0050 m, Ba = 1.0 ×10−3 T.  
(b) The direction of this field is out of the page, as 
Fig. 29-6(c) makes clear. (c) The last remark in the 
Pb. statement implies that treating b as a point 
midway bet. two infinite wires is a good approxi- 
mation. Thus, using Eq. 29-4, Bb = 2(μ0i/2πR) = 8.0 
×10−4 T. (d) This field, too, points out of the page. 
59. Using the right-hand rule (and symmetry), we 
see that Bnet points along what we will refer to as 
the y axis (passing through P), consisting of two 
equal magnetic field y-components.  Using Eq. 29- 
17, |Bnet| = 2(μ0i/2πr)sinθ, where i = 4.00 A, r = (d1

2 

+ d2
2/4)−1/2 = 5.00 m, and θ = tan−1(2d2/d1) = 53.1°. 

Therefore, |Bnet| = 2.56 ×10−7 T. 
06. (a) Recalling the straight sections discussion in 
S.P. 29-1, we see that the current in the straight seg- 
ments collinear with C do not contribute to the field 
at that point. Eq. 29-9 (with φ = π) indicates that the 
current in the semicircular arc contributes μ0i/4R to 
the field at C. Thus, the magnitude of the magnetic 
field is B = μ0i/4R = (4π×10−7) (0.0348)/(4×0.0926) 
= 1.18×10−7 (T). (b) The right-hand rule shows that 
this field is into the page. 
08. (a) Since they carry current in the same direc- 
tion, then (by the right-hand rule) the only region in 
which their fields might cancel is between them. 
Thus, if the point at which we are evaluating their 
field is r away from the wire carrying current i and 
is d–r away from the wire carrying current 3.00i, 
then the canceling of their fields leads to 
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(b) Doubling the currents does not change the loca- 
tion where the magnetic field is zero. 
21. (a) The contribution to BC from the (infinite) 
straight segment of the wire is  BC1 = μ0i/2πR. The 
contribution from the circular loop is BC2 = μ0i/2R. 
Thus, 

B = BC1 + BC2 = (μ0i/2R)(1+π−1) = 2.53×10−7 T. 
BC points out of the page, or in the +z direction. In 

unit-vector notation, BC = (2.53×10−7 T)k. 
(b) Now BC1⊥ BC2, so  BC = (BC1

2+BC2
2)1/2 = 

         (μ0i/2R)(1+π−2)1/2 = 2.02×10−7 T,  
and BC points at an angle θ (relative to the plane of 
the paper) equal to tan−1(BC1/BC2) = tan−1(1/π) = 
17.66°. In unit-vector notation,  

BC = BC(cosθ i+sinθ k)  
= (1.92×10−7 T) I + (6.12×10−8 T) k 

33. The magnitudes of the forces on the sides of the 
rectangle which are parallel to the long straight wire 
(with i1 = 30.0 A) are computed using Eq. 29-13, 
but the force on each of the sides lying perpendicu- 
lar to it (along our y axis, with the origin at the top wire 
and +y downward) would be figured by integrating as 
follows: 
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Fortunately, these forces on the two perpendicular 
sides of length b cancel out. For the remaining two 
(parallel) sides of length L, we obtain 

F = (μ0i1i2L/2π)[a−1−(a+b)−1]  
= μ0i1i2Lb/2πa(a+b) = 3.2×10−3 N. 

and F points toward the wire, or j. In unit-vector 
notation, we have F = (3.20×10−3 N)j. 
40. It is possible (though tedious) to use Eq. 29-26 
and evaluate the contributions (with the intent to sum 
them) of all 1200 loops to the field at, say, the center 
of the solenoid. This would make use of all the 
information given in the problem statement, but this 
is not the method that the student is expected to use 
here. Instead, Eq.29-23 for the ideal solenoid (which 
does not make use of the coil radius) is the preferred 
method: B = μ0ni = μ0(N/l)i, where i = 3.60 A, l = 
0.950 m and N = 1200. This yields B = 0.00571 T. 
47. The magnitude of the magnetic dipole moment 
is given by μ = NiA, where N is the number of turns, 
i is the current, and A is the area. We use A = πR2, 
where R is the radius. Thus, 

μ = (200)(0.29)π (0.10/2)2 = 0.46 (A·m2). 
50. We use Eq. 29-26 and note that the contribu- 
tions to Bp from the two coils are the same. Thus, 
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Bp is in the positive x direction. 
71. Since the radius is R = 0.0013 m, then the i = 50 
A produces B = μ0i/2πR = 0.0077 T at the edge of 
the wire. The three equations, Eqs. 29-4, 29-17 and 
29-20, agree at this point. 
78. Using Eq. 29-20, |B| = (μ0i/2πR2)r, we find that 
r = 0.00128 m gives the desired field value. 
Ex.5-1: Pb.29-66. 
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重點整理－第 29 章 電流產生的磁場 
必歐⎯沙伐定律 電流長度元 ids 於離其距離 r 處

產生的磁場 Bd
v

= 2
0 ˆ

4 r
rsid ×

v

π
μ , μ0 (= 4π×10−7 T m/A, 

N/A2, Wb/A m, H/m)為真空之磁導率, r 為電流長

度元至觀測點之位置向量。 
Note電流產生的磁場強度必正比於電流。 

長直導線產生的磁場  B =
r
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μ , r:觀測點至導線

之垂直距離, B 方向 J×r。磁場線為共軸同心圓。 
直導線(長度 L)產生的磁場 (垂直平分線上) 
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圓弧導線產生的磁場  B =
R

i
 4

0
π
φμ , 

(圓弧中心, φ:圓弧張角, R:圓弧半徑) 

兩平行電流(i1 & i2)之作用力  F = L
d
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d: 兩電流之距, L: 導線長度; 力方向: 電流同向

則相吸, 反向則相斥。 
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(Hint x = atanβ) 

•備忘錄• 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

安培電流之定義 兩平行長直導線各載相同電流,
當其相距 1 m 時, 互施於對方每單位長度之力若

為 2×10−7 N, 則此電流規定為 1 A (1946 年)。 

安培定律  ∫ ⋅ l
vv

dB = μ0 ienc, (沿著任意封閉路徑磁

場之線積分值等於該路徑包圍之淨電流乘以μ0). 
理想螺線管之磁場  (導線沿著圓柱面緊密纏繞,
內部之磁場為均勻的, B 方向沿著對稱軸) 

B = μ0n i, n: 線圈密度(單位長度之匝數). 

環形線圈之磁場  B =
r
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μ , N: 線圈匝數. 

圓形導線之磁場  即圓形電流迴路, z 為中心軸 

Bz = 2/322
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As z » a, Bz = 3
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μμ  (field due to a dipole). 

如前所述，腦部活動怎樣產生磁場？ 
Law of Biot and Savart 必歐-沙伐定律; current-length 
element 電流長度元; permeability 磁導率; Ampére 安培; 
Ampere law 安培定律; Amperian loop 安培迴線; wire/ 
conductor導線; circular wire圓形導線; solenoid螺線管; 
toroid 環(環形線圈); rail gun 導軌火炮; conducting fuse
熔線; MEG 腦照相術; SQUID 超導量子干射儀;  
 
 
 
 
 
 


