Ex．1－1，Prob．2－71（HRW，8e）Sol．

We denote the required time as t ，assuming the light turns green when the clock reads zero．By this time， the distances traveled by the two vehicles must be the same．
（a）Denoting the acceleration of the automobile as a and the（constant）speed of the truck as v then

$$
\Delta x=\left.\frac{1}{2} a t^{2}\right|_{\mathrm{car}}=\left.v t\right|_{\text {truck }},
$$

which leads to

$$
t=\frac{2 v}{a}=\frac{2(9.5)}{2.2}=8.63 \approx 8.6(\mathrm{~s})
$$

Therefore，$\quad \Delta x=v t=(9.5)(8.63)=81.9 \approx 82(\mathrm{~m})$ ．
（b）The speed of the car at that moment is

$$
\left.v\right|_{\mathrm{car}}=a t=(2.2)(8.63)=18.9 \approx 19(\mathrm{~m} / \mathrm{s})
$$

Ex．2－2，Prob．2－88（HRW，8e）Sol．

We adopt the convention frequently used in the text： that＂$u p$＂is the positive y direction．（a）At the high－ est point in the trajectory $v=0$ ．Thus，with $t=1.60$ s ，the equation $v=v_{0}-g t$ yields $v_{0}=15.7 \mathrm{~m} / \mathrm{s}$ ．
（b）One equation that is not dependent on our result from part（a）is $y-y_{0}=v_{0} t-\frac{1}{2} g t^{2}$ ；this readily gives $y_{\max }-y_{0}=12.5 \mathrm{~m}$ for the highest（＂max＂） point measured relative to where it started（the top of the building）．
（c）Now we use our result from part（a）and plug into $y-y_{0}=v_{0} t-\frac{1}{2} g t^{2}$ with $t=6.00 \mathrm{~s}$ and $y=0$ （the ground level）．Thus，we have

$$
0-y_{0}=(15.68 \mathrm{~m} / \mathrm{s})(6.00 \mathrm{~s})-\frac{1}{2}\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(6.00 \mathrm{~s})^{2}
$$

Therefore，y_{0}（the height of the building）is equal to 82.3 m ．

