Ex．1－1，Prob．3－35（HRW，8e）Sol．

We apply Eqs．3－30 and 3－23．If a vector－capable cal－ culator is used，this makes a good exercise for get－ ting familiar with those features．Here we briefly sketch the method．
（a）We note that $\boldsymbol{b} \times \boldsymbol{c}=-8.0 \mathbf{i}+5.0 \mathbf{j}+6.0 \mathbf{k}$ ．Thus， $\boldsymbol{a} \cdot \boldsymbol{b} \times \boldsymbol{c}=(3.0)(-8.0)+(3.0)(5.0)+(-2.0)(6.0)=-21$ ． （b）We note that $\boldsymbol{b}+\boldsymbol{c}=1.0 \mathbf{i}-2.0 \mathbf{j}+3.0 \mathbf{k}$ ．Thus， $\boldsymbol{a} \cdot(\boldsymbol{b}+\boldsymbol{c})=(3.0)(1.0)+(3.0)(-2.0)+(-2.0)(3.0)=$ －9．0．
（c）Finally，$\quad \boldsymbol{a} \times(\boldsymbol{b}+\boldsymbol{c})=[(3.0)(3.0)-(-2.0)(-2.0)] \mathbf{i}$ $+[(-2.0)(1.0)-(3.0)(3.0)] j$ $+[(3.0)(-2.0)-(1.0)(3.0)] \mathbf{k}=5.0 \mathbf{i}-11 \mathbf{j}-9.0 \mathbf{k}$ ．

Ex．1－2，Prob．3－48（HRW，8e）Sol．

The vectors are shown on the diagram．The x axis runs from west to east and the y axis runs from sou－ th to north．Then $a_{x}=5.0 \mathrm{~m}, a_{y}=0, b_{x}=-(4.0 \mathrm{~m}) \sin$ $35^{\circ}=-2.29 \mathrm{~m}$ ，and $b_{y}=(4.0 \mathrm{~m}) \cos 35^{\circ}=3.28 \mathrm{~m}$ ．
（a）Let $\boldsymbol{c}=\boldsymbol{a}+\boldsymbol{b}$ ．Then $c_{x}=a_{x}+b_{x}=5.00-2.29=$ $2.71(\mathrm{~m})$ and $c_{y}=a_{y}+b_{y}=3.28(\mathrm{~m})$ ．The magni－ tude of c is

$$
c=\sqrt{c_{x}^{2}+c_{y}^{2}}=\sqrt{2.71^{2}+3.28^{2}}=4.25 \approx 4.2(\mathrm{~m})
$$

（b）The angle θ that $\boldsymbol{c}=\boldsymbol{a}+\boldsymbol{b}$ makes with the $+x$ axis is $\theta=\tan ^{-1}\left(\frac{c_{y}}{c_{x}}\right)=\tan ^{-1}\left(\frac{3.28}{2.71}\right)=50.4^{\circ} \approx 50^{\circ}$ ．
（c）The vector $\boldsymbol{b}-\boldsymbol{a}$ is found by adding $-\boldsymbol{a}$ to \boldsymbol{b} ．
The result is shown on the diagram to the right．Let $\boldsymbol{d}=\boldsymbol{b}-\boldsymbol{a}$ ．The components are $d_{x}=b_{x}-a_{x}=-2.29$ $-5.00=-7.29(\mathrm{~m})$ and $d_{y}=b_{y}-a_{y}=3.28 \mathrm{~m}$ ．The magnitude of \boldsymbol{d} is $d=\sqrt{d_{x}^{2}+d_{y}^{2}}=7.99 \mathrm{~m} \approx 8.0 \mathrm{~m}$ ． （d）The tangent of the angle θ that \boldsymbol{d} makes with the $+x$ axis（east）is $\tan \theta=\frac{d_{y}}{d_{x}}=\frac{3.28}{-7.29}=-0.449$ ．
There are two solutions：-24.2° and $155.8^{\circ} \approx 156^{\circ}$ ． As the diagram shows，the second solution is cor－ rect．The vector $\boldsymbol{d}=\boldsymbol{b}-\boldsymbol{a}$ is 24° north of west．

