Chapter 27

02．The chemical energy of the battery is reduced by $\Delta E=q \varepsilon$ ，where q is the charge that passes through in time $\Delta t=6.0 \mathrm{~min}$ ，and ε is the emf of the battery．If i is the current，then $q=i \Delta t$ and

$$
\begin{gathered}
E=I \varepsilon \Delta t=(5.0 \mathrm{~A})(6.0 \mathrm{~V})(6.0 \mathrm{~min})(60 \mathrm{~s} / \mathrm{min}) \\
=1.1 \times 10^{4} \mathrm{~J} .
\end{gathered}
$$

03．If P is the rate at which the battery delivers energy and Δt is the time，then $\Delta E=P \Delta t$ is the energy delivered in time Δt ．If q is the charge that passes through the battery in time Δt and ε is the emf of the battery，then $\Delta E=q \varepsilon$ ．Equating the two expressions for ΔE and solving for Δt ，we obtain

$$
\Delta t=\frac{q \varepsilon}{P}=\frac{(120 \mathrm{Ah})(12.0 \mathrm{~V})}{100 \mathrm{~W}}=14.4 \mathrm{~h} .
$$

06．The current in the circuit is

$$
i=(150 \mathrm{~V}-50 \mathrm{~V}) /(3.0 \Omega+2.0 \Omega)=20 \mathrm{~A}
$$

So from $V_{Q}+150 \mathrm{~V}-(2.0 \Omega) i=V_{P}$ ，we get $V_{Q}=$ $100 \mathrm{~V}+(2.0 \Omega)(20 \mathrm{~A})-150 \mathrm{~V}=-10 \mathrm{~V}$ ．
18．（a）$R_{\text {eq }}(F H)=(10.0)(10.0)(5.00) /[(10.0)(10.0)+$ $2(10.0)(5.00)]=2.50(\Omega) . \quad(b) R_{\text {eq }}(F G)=(5.00) R /$ （ $R+5.00$ ），where $R=5.00+(5.00)(10.0) /(5.00+10.0)$ $=8.33(\Omega)$ ．So $R_{\text {eq }}(F G)=(5.00)(8.33) /(5.00+8.33)$ $=3.13(\Omega)$ ．
23．First，we note V_{4} ，that the voltage across R_{4} is equal to the sum of the voltages across R_{5} and R_{6} ：

$$
V_{4}=i_{6}\left(R_{5}+R_{6}\right)=(1.40)(8.00+4.00)=16.8(\mathrm{~V})
$$

The current through R_{4} is then equal to $i_{4}=V_{4} / R_{4}$ $=16.8 / 16.0=1.05(\mathrm{~A}) . \quad$ By the junction rule，the current in R_{2} is $i_{2}=i_{4}+i_{6}=1.05+1.40=2.45(\mathrm{~A})$ ， so its voltage is $V_{2}=(2.00)(2.45)=4.90(\mathrm{~V})$ ．The loop rule tells us the voltage across R_{3} is $V_{3}=V_{2}+$ $V_{4}=21.7 \mathrm{~V}$（implying that the current through it is i_{3} $\left.=V_{3} / 2.00=10.85 \mathrm{~A}\right)$ ．The junction rule now gives the current in R_{1} as $i_{1}=i_{2}+i_{3}=2.45+10.85=13.3$ （A），implying that the voltage across it is $V_{1}=$ $(13.3)(2.00)=26.6(\mathrm{~V})$ ．Therefore，by the loop rule， $\varepsilon=V_{1}+V_{3}=26.6+21.7=48.3(\mathrm{~V})$ ．
27．（a）We note that the R_{1} resistors occur in series pairs，contributing net resistance $2 R_{1}$ in each branch where they appear．Since $\varepsilon_{2}=\varepsilon_{3}$ and $R_{2}=2 R_{1}$ ，from symmetry we know that the currents through ε_{2} and ε_{3} are the same：$i_{2}=i_{3}=i$ ．Therefore，the current through ε_{1} is $i_{1}=2 i$ ．Then from $V_{b}-V_{a}=\varepsilon_{2}-i R_{2}=$ $\varepsilon_{1}+\left(2 R_{1}\right)(2 i) \quad$ we obtain

$$
i=\frac{\varepsilon_{2}-\varepsilon_{1}}{4 R_{1}+R_{2}}=\frac{4.0-2.0}{4(1.0)+2.0}=0.33(\mathrm{~A}) .
$$

Therefore，the current through ε_{1} is $i_{1}=2 i=0.67 \mathrm{~A}$ ． （b）The direction of i_{1} is downward．（c）The current through ε_{2} is $i_{2}=0.33 \mathrm{~A}$ ．（d）The direction of i_{2} is upward．（e）From part（a），we have $i_{3}=i_{2}=0.33 \mathrm{~A}$ ． （f）The direction of i_{3} is also upward．（g）$V_{a}-V_{b}$
$=-i R_{2}+\varepsilon_{2}=-(0.333)(2.0)+4.0=3.3(\mathrm{~V})$.
33．（a）We first find the currents．Let i_{1} be the current in R_{1} and take it to be positive if it is to the right．Let i_{2} be the current in R_{2} and take it to be positive if it is to the left．Let i_{3} be the current in R_{3} and take it to be positive if it is upward．The junc－ tion rule produces

$$
i_{1}+i_{2}+i_{3}=0
$$

The loop rule applied to the left－hand loop produces

$$
\varepsilon_{1}-i_{1} R_{1}+i_{3} R_{3}=0,
$$

and applied to the right－hand loop produces

$$
\varepsilon_{2}-i_{2} R_{2}+i_{3} R_{3}=0
$$

We substitute $i_{3}=-i_{2}-i_{1}$ ，from the first eq．，into the other two to obtain

$$
\varepsilon_{1}-i_{1} R_{1}-i_{2} R_{2}-i_{3} R_{3}=0
$$

and $\quad \varepsilon_{2}-i_{2} R_{2}-i_{2} R_{3}-i_{1} R_{3}=0$ ．
Solving the above equations yield

$$
\begin{aligned}
& i_{1}=\frac{\varepsilon_{1}\left(R_{2}+R_{3}\right)-\varepsilon_{2} R_{3}}{R_{1} R_{2}+R_{1} R_{3}+R_{2} R_{3}}=0.421(\mathrm{~A}) \\
&= \frac{(3.00)(2.00+5.00)-(1.00)(5.00)}{(4.00)(2.00)+(4.00)(5.00)+(2.00)(5.00)} . \\
& i_{2}=\frac{\varepsilon_{2}\left(R_{1}+R_{3}\right)-\varepsilon_{1} R_{3}}{R_{1} R_{2}+R_{1} R_{3}+R_{2} R_{3}}=-0.158(\mathrm{~A}) \\
&= \frac{(1.00)(4.00+5.00)-(3.00)(5.00)}{(4.00)(2.00)+(4.00)(5.00)+(2.00)(5.00)} . \\
& i_{3}=-\frac{\varepsilon_{2} R_{1}+\varepsilon_{1} R_{2}}{R_{1} R_{2}+R_{1} R_{3}+R_{2} R_{3}}=-0.263(\mathrm{~A}) \\
&=-\frac{(1.00)(4.00)+(3.00)(2.00)}{(4.00)(2.00)+(4.00)(5.00)+(2.00)(5.00)} .
\end{aligned}
$$

Note that the current i_{3} in R_{3} is actually downward and the current i_{2} in R_{2} is to the right．The current i_{1} in R_{1} is to the right．（a）The power dissipated in R_{1} is $P_{1}=i_{1}{ }^{2} R_{1}=(0.421)^{2}(4.00)=0.709(\mathrm{~W})$ ．（b）The power dissipated in R_{2} is $P_{2}=i_{2}{ }^{2} R_{2}=(-0.158)^{2}$ （2．00）$=0.0499 \approx 0.050(\mathrm{~W})$ ．（c）The power dissipa－ pated in R_{3} is $\quad P_{3}=i_{3}{ }^{2} R_{3}=(-0.263)^{2}(5.00)=0.346$ （W）．（d）The power supplied by ε_{1} is $i_{3} \varepsilon_{1}=(0.421)$ $(3.00)=1.26(\mathrm{~W}) .(\boldsymbol{e})$ The power＂supplied＂by ε_{2} is $i_{2} \varepsilon_{2}=(-0.158)(1.00)=-0.158(\mathrm{~W})$ ．The negative sign indicates that ε_{2} is actually absorbing energy from the circuit．
66．（a）The loop rule（proceeding counterclockwise around the right loop）leads to $\varepsilon_{2}-i_{1} R_{1}=0$（where i_{1} was assumed downward）．This yields $i_{1}=0.0600 \mathrm{~A}$ ． （b）The direction of i_{1} is downward．（c）The loop rule（counterclockwise around the left loop）gives
$\left(+\varepsilon_{1}\right)+\left(+i_{1} R_{1}\right)+\left(-i_{2} R_{2}\right)=0$, where i_{2} has been assumed leftward．This yields $i_{3}=$ 0.180 A．（d）A positive value
 of i_{3} implies that our assumption on the direction is
correct，i．e．，it flows leftward．（e）The junction rule tells us that the current through the 12 V battery is $0.180+0.0600=0.240$（A）．（f）The direction is upward．
95．（a）Using the junction rule（ $i_{1}=i_{2}+i_{3}$ ）we write two loop rule equations：

$$
\begin{aligned}
& \varepsilon_{1}-i_{2} R_{2}-\left(i_{2}+i_{3}\right) R_{1}=0 \\
& \varepsilon_{2}-i_{3} R_{3}-\left(i_{2}+i_{3}\right) R_{1}=0
\end{aligned}
$$

Solving，we find $i_{2}=0.0109$ A（rightward，as was assumed in writing the equations as we did），$i_{3}=$ 0．0273 A（leftward），and $i_{1}=i_{2}+i_{3}=0.0382 \mathrm{~A}$（down－ ward）．（b）downward．See the results in part（a）．（c） $i_{2}=0.0109 \mathrm{~A}$ ．See the results in part（a）．（d）right－ ward．See the results in part（a）．（e）$i_{3}=0.0273 \mathrm{~A}$ ． See the results in part（a）．（f）leftward．See the results in part（a）．（g）The voltage across R_{1} equals $V_{\mathrm{A}}:(0.0382 \mathrm{~A})(100 \Omega)=+3.82 \mathrm{~V}$ ．
45．During charging，the charge on the positive plate of the capacitor is given by $q=C \varepsilon\left(1-e^{-t / \tau}\right)$ ， where C is the capacitance，ε is applied emf，and τ $=R C$ is the capacitive time constant．The equili－ brium charge is $q_{\text {eq }}=C \varepsilon$ ．We require $q=0.99 q_{\text {eq }}=$ $0.99 C \varepsilon$ ，so $0.99=1-e^{-t / \tau}$ ．Thus，$e^{-t / \tau}=0.01$ ．Taking the natural logarithm of both sides，we obtain t / τ $=-\ln 0.01=4.61$ or $t=4.61 \tau$ ．
46．（a）$\tau=R C=\left(1.40 \times 10^{6}\right)\left(1.80 \times 10^{-6}\right)=2.52$（s）．
（b）$q_{o}=\varepsilon C=(12.0)(1.80 \mu)=21.6 \mu \mathrm{C}$ ．（c）The time t satisfies $q=q_{0}\left(1-e^{-t / R C}\right)$ ，or

$$
t=R C \ln \frac{q_{0}}{q_{0}-q}=(2.52) \ln \frac{21.6}{21.6-16.0}=3.40(\mathrm{~s})
$$

48．Here we denote the battery emf as V ．Then the requirement stated in the $P b$ that the resistor voltage be equal to the capacitor voltage becomes $i R=V_{C}$ ， or $V e^{-t / R C}=V\left(1-e^{-t / R C}\right)$ ，where Eqs．27－34 and 35 have been used．This leads to $t=R C \ln 2$ ，or $t=0.208 \mathrm{~ms}$ ．
53．At $t=0$ the capacitor is completely uncharged and the current in the capacitor branch is as it would be if the capacitor were replaced by a wire． Let i_{1} be the current in R_{1} and take it to be positive if it is to the right．Let i_{2} be the current in R_{2} and take it to be positive if it is downward．Let i_{3} be the current in R_{3} and take it to be positive if it is downward．The junction rule produces $i_{1}=i_{2}+i_{3}$ the loop rule applied to the left－hand loop produces $\varepsilon_{1}-i_{1} R_{1}+i_{2} R_{2}=0$ ，and the loop rule applied to the right－hand loop produces $\quad i_{2} R_{2}-I_{3} R_{3}=0$ ．
Since the resistances are all the same we can simpli－ fy the mathematics by replacing R_{1}, R_{2} ，and R_{3} with R ．（a）Solving the three simultaneous eqs．，we find $\quad i_{1}=2 \varepsilon / 3 R=2\left(1.2 \times 10^{3}\right) /\left[3\left(0.73 \times 10^{6}\right)=1.1 \times\right.$ $10^{-3} \mathrm{~A}$ ．（b）$i_{2}=\varepsilon / 3 R=\left(1.2 \times 10^{3}\right) /\left[3\left(0.73 \times 10^{6}\right)\right]=$
$5.5 \times 10^{-4} \mathrm{~A}$ ．（c）$i_{3}=i_{2}=5.5 \times 10^{-4} \mathrm{~A}$ ．At $t=\infty$ the capacitor is fully charged and the current in the capacitor branch is 0 ．Thus，$i_{1}=i_{2}$ ，and the loop rule yields $\quad \varepsilon_{1}-i_{1} R_{1}+i_{1} R_{2}=0$ ．（d）The solution is i_{1} $=\varepsilon / 2 R=\left(1.2 \times 10^{3}\right) /\left[2\left(0.73 \times 10^{6}\right)\right]=8.2 \times 10^{-4} \mathrm{~A} . \quad(\boldsymbol{e})$ $i_{2}=i_{1}=8.2 \times 10^{-4} \mathrm{~A}$ ．（f）As stated before，the cur－ rent in the capacitor branch is $i_{3}=0$ ．We take the upper plate of the capacitor to be positive．This is consistent with current flowing into that plate．The junction equation is $i_{1}=i_{2}+i_{3}$ ，and the loop equa－ tions are

$$
\varepsilon-i_{1} R-i_{2} R=0 \quad \text { and } \quad-(q / C)-i_{3} R+i_{2} R=0
$$

We use the first eq．to substitute for i_{1} in the second and obtain $\varepsilon-2 i_{2} R-i_{3} R=0$ ．Thus $i_{2}=(\varepsilon-$ $\left.i_{3} R\right) / 2 R$ ．We substitute this expression into the third eq．above to obtain $-(q / C)-\left(i_{3} R\right)+(\varepsilon / 2)-\left(i_{3} R / 2\right)=$ 0 ．Now we replace i_{3} with $d q / d t$ to obtain

$$
\frac{3 R}{2} \frac{d q}{d t}+\frac{q}{C}=\frac{\varepsilon}{2}
$$

This is just like the eq．for an $R C$ series circuit， except that the time constant is $\tau=3 R C / 2$ and the impressed potential difference is $\varepsilon / 2$ ．The solution is

$$
q=\frac{1}{2} C \varepsilon\left(1-e^{-2 t / 3 R C}\right)
$$

The current in the capacitor branch is

$$
i_{3}(t)=\frac{d q}{d t}=\frac{\varepsilon}{3 R} e^{-2 t / 3 R C}
$$

The current in the center branch is

$$
i_{2}(t)=\frac{\varepsilon}{2 R}-\frac{1}{2} i_{3}=\frac{\varepsilon}{2 R}-\frac{\varepsilon}{6 R} e^{-2 t / 3 R C}=\frac{\varepsilon}{6 R}\left(3-e^{-2 t / 3 R C}\right)
$$

and the potential difference across R_{2} is

$$
V_{2}(t)=i_{2} R=\frac{1}{6} \varepsilon\left(3-e^{-2 t / 3 R C}\right)
$$

（g）For $t=0, e^{-2 t / 3 R C}$ is 1 and $V_{2}=\varepsilon / 3=1.2 \times 10^{3} / 3=$ $4.0 \times 10^{2}(\mathrm{~V})$ ．（h）For $t=$ $\infty, e^{-2 t / 3 R C}=0$ and $V_{2}=$ $\varepsilon / 2=\left(1.2 \times 10^{3} \mathrm{~V}\right) / 2=$ 6.0×10^{2} V．（i）A plot of V_{2} as a function of time is shown in the follow－ ing graph．

54．In the steady state situation，the capacitor vol－ tage will equal the voltage across $R_{2}=15 \mathrm{k} \Omega$ ：

$$
V_{0}=R_{2} \frac{\varepsilon}{R_{1}+R_{2}}=(15.0) \frac{20.0}{10.0+15.0}=12.0(\mathrm{~V})
$$

Now，multiplying Eq．27－39 by the capacitance leads to $V=V_{0} e^{-t / R C}$ describing the voltage across the capacitor（and across $R_{2}=15.0 \mathrm{k} \Omega$ ）after the switch is opened（at $t=0$ ）．Thus，with $t=0.00400 \mathrm{~s}$ ， we obtain

$$
V=(12) \exp [-0.004 /(15.0 \mathrm{k} \times 0.400 \mu)]=6.16(\mathrm{~V})
$$

Therefore，using Ohm＇s law，the current through R_{2} is $6.16 / 15000=4.11 \times 10^{-4}(\mathrm{~A})$ ．

重點整理—第27章直流電路
電動勢源（電源）—可對電荷載子作功並維持—定端電位差之元件；電動勢（emf，單位：V）$\varepsilon=d W / d q$對單位正電荷由低電位端移至高位端所作的功，電路符號 \ddagger－。理想電動勢源其内部無耗能機制，可提供端電位差 ε ；而真實電動勢源可視為一理想電動勢源 ε＂串聯＂一内電阻 r ，其提供端電位差 $\varepsilon-i R \circ$ 迴路：一封閉的導電路徑（自由電荷可作循環運動）。接地：透過導體與地面相接，電路符號 $=$ ，此為零電位。電阻器電路符號 $-\mathbf{W}$ 。
Kirchhoff＇s Junction Rule（Current Law）
流入或流出任一節點的電流之代數和須為零；流入任一節點的電流和須等於流出該節點的電流。 ＜電荷守沍 charge conservation＞

Kirchhoff＇s Loop Rule（Voltage Law）
続著一電路之任一迴路走一圈，所遇到的電位改變量之代數和須為零。＜能量守沍＞
解電路問題技巧：1．劃出電路；2．對電路之各分路，給予一電流（符號及方向）；3．運用串聯及並聯方法，減少分路；4．利用節點規則以減少電流變數；5．利用迴路規則解出各電流變數。

S1．鎳氢或鋰類可充電電池以 mAh（毫安培小時）表示儲存電荷量， $1 \mathrm{mAh}=3.6 \mathrm{C}$ 。S2．用電安全：最重要守則—勿使身體接觸高低電位而使電流通過身體或過電流使用；用電不當，造成觸電，可能致命，或電路走火引起生命財產的損失！電擊之危險：（1）引起心臟或肺部發生問題，（2）致命的燒傷。家居電線：傳統的為二線改用三線（含接地線）最安全：其為火（平）／中性（平）／接地（圓）線，或者使用較安全二線＂極性插頭＂［寬（中性）口及窄（火）口］。

電位差（電壓）符號規則：一般規則—電位減少（增加），$-(+) V$ ；a．順（逆）著電流通過電阻器，$-(+) i R$ ； b．從電容器正（負）板移動到負（正）板，$-(+) q / C$ ； \boldsymbol{c} ．從電源正（負）端移動到負（正）端，$-(+) \varepsilon$ 。

電阻器串聯：a．流經各電阻器之電流皆相等，b．總電位差等於各電阻器之電位差和 $V_{a b}=\Sigma_{i} V_{i}, \boldsymbol{c}$ 。等效電阻 $R_{e q}=\Sigma_{i} R_{i}, R_{e q}>R_{i}$ 。
電阻器並聯：a．各電阻器兩端之電位差皆相等， b．總電流等於經各電阻器之電流和 $I=\Sigma_{i} I_{i}$ ， \boldsymbol{c} ．等效電阻 $R_{e q}{ }^{-1}=\Sigma_{i} R_{i}^{-1}, R_{e q}<R_{i}$ 。
$\boldsymbol{R C}$ 電路—電阻器 R 串聯電容器 C（簡易的）：a．充電 $\left(q_{0}=0\right) q=C \varepsilon\left(1-e^{-t / \tau}\right) ; \boldsymbol{b}$ ．放電 $\left(q_{0}=C \varepsilon\right) q=$ $C \varepsilon e^{-t / \tau} ; \boldsymbol{c}$ ．時間常數 $\tau \equiv R C ; \boldsymbol{d}$ ．電容器充電時，電阻器及電容器各分享一半電源提供之能量。 Note 電容器如未带電（如剛充電時），$V_{C}=0$ ，即短路，等效電阻 $R_{C}=0$ ；若飽和充電，$I_{C}=0$ ，即斷路，等效電阻 $R_{C} \rightarrow \infty$ 。電容器充電或放電時其带電量及電壓與時間關係為指數的。

伏特計（等效電阻 $R_{V} \rightarrow \infty$ ）測電壓用，聯接須並聯；安培計（等效電阻 $R_{A} \rightarrow 0$ ）測電流用，聯接須串聯。

須採取何種預防措施才能防止此類火災？
direct－current（DC）circuits 直流電路；device 装置，器件； electromotive force（emf）電動勢；rechargeable 可充電的； loop 迴路（線）；junction／node 節點；ground 接地；hot／ neu－tral line 火／中性線；voltage 電壓，伏特數；（capaci－ tive）time constant（電容）時間常數；ammeter 安培計； voltmeter 伏特計；polarized plug 極性插頭；electrical engineering 電機工程；electric grid 電力網；electric generator 發電機；pit stop 修理站；electric eel 電鰻； Q\＆A．電鰻如何發電？為什麼不會電到自己？科學人 2006年4月號。＊鋰電池：安全不起火，科學人 2007年 1 月。•備忘錄•

