Chapter 26 Current and Resistance

01．（a）The charge that passes through any cross section is the product of the current and time．Since $4.0 \mathrm{~min}=240 \mathrm{~s}, q=i t=(5.0 \mathrm{~A})(240 \mathrm{~s})=1.2 \times 10^{3} \mathrm{C}$ ． （b）The number of electrons N is given by $q=N e$ ， where e is the magnitude of electron charge．Thus，

$$
N=q / e=(1200 \mathrm{C}) /\left(1.60 \times 10^{-19} \mathrm{C}\right)=7.5 \times 10^{21} .
$$

03．Suppose the charge on the sphere increases by Δq in time Δt ．Then，in that time its potential in－ creases by $\Delta V=\Delta q / 4 \pi \varepsilon_{0} r$ ，where r is the radius of the sphere．This means $\Delta q=4 \pi \varepsilon_{0} r \Delta V$ ．Now，$\Delta q=$ $\left(i_{\text {in }}-i_{\text {out }}\right) \Delta t$ ，where $i_{\text {in }}$ is the current entering the sphere and $i_{\text {out }}$ is the current leaving．Thus，$\Delta t=\Delta q /$ $\left(i_{\text {in }}-i_{\text {out }}\right)=4 \pi \varepsilon_{0} r \Delta V /\left(i_{\text {in }}-i_{\text {out }}\right)=\left(8.99 \times 10^{9}\right)^{-1}(0.10)$ $(1000) /(1.0000020-1.0)=5.6 \times 10^{-3}(\mathrm{~s})$ ．
07．The cross－sectional area of wire is given by $A=$ πr^{2} ，where r is its radius（half its thickness）．The current density is $J=i / A=i / \pi r^{2}$ ，so $r=(i / \pi J)^{1 / 2}=$ $\left[0.50 / \pi\left(440 \times 10^{4}\right)\right]^{1 / 2}=1.9 \times 10^{-4}(\mathrm{~m})$ ．The diameter of the wire is therefore

$$
d=2 r=2\left(1.9 \times 10^{-4} \mathrm{~m}\right)=3.8 \times 10^{-4} \mathrm{~m}
$$

09．We use $v_{d}=J / n e=i / A n e$ ．Thus，$t=L / v_{d}=$ L／（i／Ane $)=$ LAne $/ i=(0.85 \mathrm{~m})\left(0.21 \times 10^{-14} \mathrm{~m}^{2}\right)(8.47$ $\left.\times 10^{28} / \mathrm{m}^{3}\right)\left(1.60 \times 10^{-19} \mathrm{C}\right) / 300 \mathrm{~A}=8.1 \times 10^{2} \mathrm{~s}=13$ min．
13．We find the conductivity of Nichrome（the reci－ procal of its resistivity）as follows：

$$
\begin{gathered}
\sigma=\frac{1}{\rho}=\frac{L}{R A}=\frac{L}{(V / i) A}=\frac{L i}{V A} \\
=\frac{(1.0 \mathrm{~m})(4.0 \mathrm{~A})}{(2.0 \mathrm{~V})\left(1.0 \times 10^{-6} \mathrm{~m}^{2}\right)}=2.0 \times 10^{6} / \Omega \cdot \mathrm{m} .
\end{gathered}
$$

15．The resistance of the wire is given by $R=\rho L / A$ ， where ρ is the resistivity of the material，L is the length of the wire，and A is its cross－sectional area． In this case，$A=\pi r^{2}=\pi\left(0.50 \times 10^{-3}\right)^{2}=7.85 \times 10^{-7}$ $\left(\mathrm{m}^{2}\right)$ ．Thus，$\rho=R A / L=\left(50 \times 10^{-3}\right)\left(7.85 \times 10^{-7}\right) / 2.0=$ $2.0 \times 10^{-8}(\Omega \cdot \mathrm{~m})$ ．
17．Since the potential difference V and current i are related by $V=i R$ ，where R is the resistance of the electrician，the fatal voltage is

$$
V=\left(50 \times 10^{-3} \mathrm{~A}\right)(2000 \Omega)=100 \mathrm{~V}
$$

18．The thickness（diameter）of the wire is denoted by D ．We use $R \propto L / A$（Eq．26－16）and note that $A=$ $\pi(D / 2)^{2} \propto D^{2}$ ．The resistance of the second wire is given by

$$
R_{2}=R\left(\frac{A_{1}}{A_{2}}\right)\left(\frac{L_{2}}{L_{1}}\right)=R\left(\frac{D_{1}}{D_{2}}\right)^{2}\left(\frac{L_{2}}{L_{1}}\right)=R(2)^{2}\left(\frac{1}{2}\right)=2 R .
$$

31．（a）The current in each strand is $i=0.750 \mathrm{~A} / 125$ $=6.00 \times 10^{-3} \mathrm{~A}$ ．（b）The potential difference is $V=$ $i R=\left(6.00 \times 10^{-3}\right)\left(2.65 \times 10^{-6}\right)=1.59 \times 10^{-8}(\mathrm{~V}) . \quad(c)$ The resistance is

$$
R_{\text {total }}=2.65 \times 10^{-6} \Omega / 125=2.12 \times 10^{-8} \Omega .
$$

38．The resistance is

$$
R=P / i^{2}=(100 \mathrm{~W}) /(3.00 \mathrm{~A})^{2}=11.1 \Omega .
$$

39．（a）The power dissipated，the current in the heater，and the potential difference across the heater are related by $P=i V$ ．Therefore，$i=P / V=1250 \mathrm{~W} /$ $115 \mathrm{~V}=10.9$ A．（b）Ohm＇s law states $V=i R$ ，where R is the resistance of the heater．Thus，$R=V / i=115$ $\mathrm{V} / 10.9 \mathrm{~A}=10.6 \Omega$ ．（c）The thermal energy E ge－ nerated by the heater in time $\Delta t=1.0 \mathrm{~h}=3600 \mathrm{~s}$ is $E=P \Delta t=(1250 \mathrm{~W})(3600 \mathrm{~s})=4.50 \times 10^{6} \mathrm{~J}$ ．
43．（a）＊The monthly cost is（100 W）（24 h／day）（31 day／month）$(6$ cents $/ \mathrm{kWh})=446$ cents $=$ US\＄4．46， assuming a 31－day month．（b）$R=V^{2} / P=(120$ $\mathrm{V})^{2} / 100 \mathrm{~W}=144 \Omega . \quad$（c）$i=P / V=100 \mathrm{~W} / 120 \mathrm{~V}=$ 0.833 A．

56．（a）Since $P=i^{2} R=J^{2} A^{2} R$ ，the current density is

$$
\begin{gathered}
J=\frac{1}{A} \sqrt{\frac{P}{R}}=\frac{1}{A} \sqrt{\frac{P}{\rho L / A}}=\sqrt{\frac{P}{\rho L A}}=1.3 \times 10^{5} \mathrm{~A} / \mathrm{m}^{2} \\
\\
=\sqrt{\frac{1.0 \mathrm{~W} /\left(3.5 \times 10^{-5} \Omega \cdot \mathrm{~m}\right)}{\pi\left(2.0 \times 10^{-2} \mathrm{~m}\right)\left(5.0 \times 10^{-3} \mathrm{~m}\right)^{2}}} .
\end{gathered}
$$

（b）From $P=i V=J A V$ we obtain

$$
\begin{aligned}
& V=\frac{P}{A J}=\frac{P}{J \pi r^{2}}=9.4 \times 10^{-2} \mathrm{~V} \\
= & \frac{1.0 \mathrm{~W}}{\pi\left(5.0 \times 10^{-3} \mathrm{~m}\right)^{2}\left(1.3 \times 10^{5} \mathrm{~A} / \mathrm{m}^{2}\right)} .
\end{aligned}
$$

57．Let $R_{H}\left(R_{L}\right)$ be the resistance at the higher （lower）temperature $800^{\circ} \mathrm{C}\left(200^{\circ} \mathrm{C}\right)$ ．Since the po－ tential difference is the same for the two tempera－ tures，the power dissipated at the lower temperature is $P_{L}=V^{2} / R_{L}$ ，and the power dissipated at the higher temperature is $P_{H}=V^{2} / R_{H}$ ，so $P_{L}=\left(R_{H} / R_{L}\right) P_{H}$ ．Now $R_{L}=R_{H}+\alpha R_{H} \Delta T$ ，where ΔT is the temperature dif－ ference $T_{L}-T_{H}=-600 \mathrm{C}^{\circ}=-600 \mathrm{~K}$ ．Thus，

$$
\begin{aligned}
& P_{L}=\frac{R_{H}}{R_{H}+\alpha R_{H} \Delta T} P_{H}=\frac{P_{H}}{1+\alpha \Delta T} \\
& =\frac{500}{1+\left(4.0 \times 10^{-4}\right)(-600)}=660(\mathrm{~W})
\end{aligned}
$$

68．We use Eq．26－28：

$$
R=V^{2} / P=200^{2} / 3000=13.3(\Omega)
$$

79．（a）In Eq．26－17，we let $\rho=2 \rho_{0}$ where ρ_{0} is the resistivity at $T_{0}=20^{\circ} \mathrm{C}$ ：

$$
\rho-\rho_{0}=2 \rho_{0}-\rho_{0}=\rho_{0} \alpha\left(T-T_{0}\right)
$$

and solve for the temperature T ：

$$
T=T_{0}+\alpha^{-1}=20^{\circ} \mathrm{C}+\left(4.3 \times 10^{-3} / \mathrm{K}\right)^{-1} \approx 250^{\circ} \mathrm{C}
$$

（b）Since a change in Celsius is equivalent to a change on the Kelvin temperature scale，the value of α used in this calculation is not inconsistent with the other units involved．It is worth noting that this agrees well with Fig．26－10．
28．＊We use $J=\sigma E=\left(n_{+}+n_{-}\right) e v_{d}$ ，which combines Eqs．26－13 and 7．（a）$J=\sigma E=\left(2.70 \times 10^{-14}\right)(120)$
$=3.24 \times 10^{-12}\left(\mathrm{~A} / \mathrm{m}^{2}\right)$ ．（b）The drift velocity is

$$
\begin{aligned}
v_{d}= & \frac{\sigma E}{\left(n_{+}+n_{-}\right) e}=\frac{\left(2.70 \times 10^{-14}\right)(120)}{(620+550)\left(10^{6}\right)\left(1.60 \times 10^{-19}\right)} \\
& =1.73 \times 10^{-2}(\mathrm{~m} / \mathrm{s})=1.73(\mathrm{~cm} / \mathrm{s})
\end{aligned}
$$

45．（a）Using Table 26－1 and Eq．26－10 or 11），we have $|\boldsymbol{E}|=\rho|\boldsymbol{J}|=\left(1.69 \times 10^{-8}\right)(2.00) /\left(2.00 \times 10^{-6}\right)=$ $1.69 \times 10^{-2}(\mathrm{~V} / \mathrm{m})$ ．（b）Using $L=4.0 \mathrm{~m}$ ，the resis－ tance is found from Eq．26－16：$R=\rho L / A=0.0338 \Omega$ ． The rate of thermal energy generation is found from Eq．26－27：

$$
P=i^{2} R=(2.00 \mathrm{~A})^{2}(0.0338 \Omega)=0.135 \mathrm{~W}
$$

Assuming a steady rate，the thermal energy generated in 30 minutes is

$$
(0.135 \mathrm{~J} / \mathrm{s})(30 \times 60 \mathrm{~s})=2.43 \times 10^{2} \mathrm{~J}
$$

33．＊（a）The current i is shown below entering the truncated cone at the left end and leaving at the right． This is our choice of positive x direction．The assumption is that the current density J at each value of x may be found by taking the ratio i / A where $A=\pi r^{2}$ is the cone＇s cross－section area at that particular value of x ．The direc－ tion of \boldsymbol{J} is identical to that shown in the figure for $i(+x$ direction）．Using Eq．26－11，we then find an expression for the electric field at each value of x ，and next find the potential difference V by integrating the field along the x axis，in accordance with the ideas of Chapter 25．Finally， the resistance of the cone is given by $R=V / i$ ．Thus，

$$
J=i /\left(\pi r^{2}\right)=E / \rho
$$

where we must deduce how r depends on x in order to proceed．Note that the radius increases linearly with x ，so we may write $r=c_{1}+c_{2} x$ ．Choosing the origin at the left end of the truncated cone，the coefficient c_{1} is chosen so that $r=a$（when $x=0$ ）；therefore，$c_{1}=a$ ．Also，the co－ efficient c_{2} must be chosen so that（at the right end of the truncated cone）we have $r=b$（when $x=L$ ）；therefore，c_{2} $=(b-a) / L$ ．Our expression，then，becomes

$$
r=a+x(b-a) / L
$$

Substituting this into our previous statement and solving for the field，we find

$$
E=\rho J=i \rho /\left(\pi r^{2}\right)=i \rho /\left[\pi\left(a+\frac{b-a}{L} x\right)^{2}\right] .
$$

Consequently，the potential difference between the faces of the cone is

$$
\begin{aligned}
V & =-\frac{i \rho}{\pi} \int_{0}^{L}\left(a+\frac{b-a}{L} x\right)^{-2} d x=\left.\frac{i \rho}{\pi} \frac{L}{b-a}\left(a+\frac{b-a}{L} x\right)^{-1}\right|_{0} ^{L} \\
& =\frac{i \rho}{\pi} \frac{L}{b-a}\left(a+\frac{b-a}{L} x\right)^{-1}=\frac{i \rho}{\pi} \frac{L}{b-a}\left(\frac{1}{a}-\frac{1}{b}\right)=\frac{i \rho}{\pi} \frac{L}{a b} .
\end{aligned}
$$

With $\rho=731 \Omega \cdot \mathrm{~m}, L=1.94 \mathrm{~cm}, a=2.00 \mathrm{~mm}$ ，and $b=$ 2.30 mm ，the resistance is therefore

$$
R=\frac{V}{i}=\frac{\rho L}{\pi a b}=9.81 \times 10^{5} \Omega .
$$

Note that if $b=a$ ，then $R=\rho L /\left(\pi a^{2}\right)=\rho L / A$ ，where $A=$ πa^{2} is the cross－sectional area of the cylinder．
（如發現錯誤煩請告知，jyang＠mail．ntou．edu．tw，Thanks．）
你要怎麼做才能減低地面電流之危險？

重點整理—第26章 電流與電阻

電流：電荷之運動形成電流，電流大小為單位時

間流經某截面之淨電量，$I \equiv \Delta q / \Delta t$ ，（單位： $\mathrm{A}=$ C / s ）。電流為純量，但有方向，其方向只表正電荷運動方向 電荷守沍：沿著導線電流到處皆相等。電流密度：$J=i / A$ or $i=J A$ ；
流經單位截面積之電流（向量，單位：A／m²）
漂移速率：電荷載子於電場方向移動之平均速率

$$
v_{d}=J / n q \text { or } v_{d}=J / n q, n q: \text { 載子電荷濃度, }
$$ （對大多數金屬，$q>0$ ；對半導體，$q<0$ ）

電阻 $R \equiv V / i$（定義）,V ：元件兩端之電位差，i ：電流，單位：$\Omega \equiv \mathrm{ohm}=\mathrm{V} / \mathrm{A}$ ；電阻器：可提供特定電阻之元件，電路符號－ W －。電阻率（單位：$\Omega \cdot \mathrm{m}=$ $\mathrm{V} \cdot \mathrm{m} / \mathrm{A})$ 對均方向性物質 $\rho=E / J$ or $E=\rho J$ ；導電率（單位：$\Omega^{-1} \cdot \mathrm{~m}^{-1}$ ）$\sigma=1 / \rho($ or $\sigma \rho=1), \sigma=J / E$ or J $=\sigma E$ 。電阻與電阻率之關係：對於均匀截面積之導線，$R=\rho L / A, L(A)$ ：導線之長度（截面積）。電阻率與温度之關係：$\Delta \rho=\rho-\rho_{0}=\rho_{0} \alpha \Delta T, \Delta T=$ $T-T_{0}$ ：温度改變量，T_{0} ：參考温度，ρ_{0} ：參考溫度之電阻率，α ：電阻率之温度係數（ K^{-1} ）（對金屬，α >0 ；對半導體，$\alpha<0$ ）。
歐姆定律：對多數金屬，流經元件之電流正比於施於該元件之電位差，$i \propto V, V_{/} i=R=$ 常數。

$$
V=i R \text { or } i=G V, G \text { : comductance. }
$$

Note 電流方向為高電位區指向低電位區。線（歐姆）性材料：遵循歐姆定律的材料。
金屬之電阻率（自由電子氣體，傳導電子行為類似理想氣體）：m, τ, n ：電荷載子（電子）之質量，平均自由時間，濃度，$\rho=m / n e^{2} \tau$ ；平均自由路程：連續雨次碰撞間之平均運動距離，$\lambda=v_{\mathrm{eff}} \tau, v_{\mathrm{eff}}$ ：（熱能造成的）等效速率；平均自由時間 τ ．連續兩次碰撞之平均時距。
電路之電功率 $P=i V, V$ ：電位差，i ：電流。
電阻性耗損功率 $P=i V=i^{2} R=V^{2} / R$ 。
電力公司提供電能收費單位 kilowatt－hours

$$
1 \mathrm{kWh}(\text { 度 })=(1 \mathrm{kWh})\left(10^{3}\right) \times(3,600)=3.60 \times 10^{6} \mathrm{~J}
$$

S1．家用電器電阻越小，功率越大；温度升高，電阻變大，而功率變小。S2。電器必標示額定功率 P 及電壓 V ，工作時電流 $i=P / V$ ．S3．省電燈泡 $23 W$ 的發光亮度等於 100 W 傳統鵭絲燈泡。

Ohm＇s law 歐姆定律；ohm（ Ω ）歐姆；resistance 電阻； resistor 電阻器；color－coding mark 色碼標記；color code system 色碼系統；steady state／current 穩定態／電流； ampere（A）安培；（electric）current 電流；current density電流密度；resistivity 電阻率；conductivity 導電率； electric power 電功率；carry current 載電流；charge carrier 電荷載子；carrier charge density 載子電荷密度； drift speed 漂移速率；effective speed 等效速率；mean free time／path 平均自由時間／路程；free－electron model／ gas 自由電子模型／氣體；Nichrome 銆鉻；doping 掺雜； semiconductor 半導體；transistor 電晶體；ceramics 陶瓷； material 材料，物質；object 物體；power system 電力系統； lightning protection 避雷；lightning bug／firefly 螢火虫； ground current 地面電流；livestock 家畜；hoof／hooves 蹄； victim 受害者；electrostatics 靜電學；•備忘錄•

物理會考注意事項：
1．會考時間為 5 月 19 日（星期六）上午 10 點至 12 點，共計 120 分鐘。

2．可以使用簡易型計算機（當天統一由監試人員發放）。
3．全部考題是選擇題。
4．試卷有 4 種•請在答案卡上填寫卷別，學號。
5．請用 2 B 鉛筆填寫答案。
6． 10 點半後不可進場考試， 11 點後始可出場。
7．考試地點如下，考試位置當天公佈
資訊工程學系—A，海事大樓409
資訊工程學系—B，海事大樓410

