
此資料專為教學用請勿流傳-楊志信 

Chapter 15, HRW’04, NTOUcs960226 1

Chapter 15  Oscillations 
01. (a) The amplitude is half the range of the dis- 
placement, or xm = 1.0 mm. (b) The maximum speed 
vm is related to the amplitude xm by vm = ω xm, where 
ω is the angular frequency. Since ω = 2π f, where f 
is the frequency, 

vm = 2πfxm = 2π(120 Hz)(1.0×10−3 m) = 0.75 m/s. 
(c) The maximum acceleration is 

am = ω 
2xm = (2πf)2xm 

= [2π(120 Hz)]2(1.0×10−3 m) = 5.7×102 m/s2. 
05. (a) The motion repeats every 0.500 s so the peri- 
od must be T = 0.500 s. (b) The frequency is the 
reciprocal of the period: f = 1/T = 1/(0.500 s) = 2.00 
Hz.  (c) The angular frequency ωis ω = 2π f = 2π 
(2.00 Hz) = 12.6 rad/s. (d) The angular frequency is 
related to the spring constant k and the mass m by 
 ω = k m . We solve for k: k = mω 

2 = (0.500 kg) 
(12.6 rad/s)2 = 79.0 N/m. (e) Let xm be the amplitude. 
The maximum speed is vm = ωxm = (12.6 rad/s) 
(0.350 m) = 4.40 m/s. (f) The maximum force is 
exerted when the displacement is a maximum and 
its magnitude is given by Fm = kxm = (79.0 N/m) 
(0.350 m) = 27.6 N. 
14. From highest level to lowest level is twice the 
amplitude xm of the motion. The period is related to 
the angular frequency by Eq. 15-5. Thus,  x = d/2 
and ω = 0.503 rad/h. The phase constant φ in Eq. 
15-3 is zero since we start our clock when xo = xm 
(at the highest point). We solve for t when x is one- 
fourth of the total distance from highest to lowest 
level, or (which is the same) half the distance from 
highest level to middle level (where we locate the 
origin of coordinates). Thus, we seek t when the 
ocean surface is at  x = xm/2 = d/4. 

x = xm cos(ωt+φ),  d/4 = (d/2) cos(0.503t+0), 
1/2 = cos(0.503t), 

which has t = 2.08 h as the smallest positive root. The 
calculator is in radians mode during this calculation. 
15. The maximum force that can be exerted by the 
surface must be less than μsFN or else the block will 
not follow the surface in its motion. Here, μs is the 
coefficient of static friction and FN is the normal 
force exerted by the surface on the block. Since the 
block does not accelerate vertically, we know that 
FN = mg, where m is the mass of the block. If the 
block follows the table and moves in simple 
harmonic motion, the magnitude of the maximum 
force exerted on it is given by F = mam = mω 

2xm = 
m(2π f)2xm, where am is the magnitude of the maxi- 
mum acceleration, ω is the angular frequency, and f 
is the frequency. The relationship ω = 2π f was used 
to obtain the last form. We substitute F = m(2π f)2xm 
and FN = mg into F < µsFN to obtain m(2π f)2xm < 

µsmg. The largest amplitude for which the block 
does not slip is 

xm 22 )0.22(
)80.9)(50.0(

) 2( ×
==

ππ

μ

f
gs 0.031 (m). 

A larger amplitude requires a larger force at the end 
points of the motion. The surface cannot supply the 
larger force and the block slips. 
20. Both parts of this problem deal with the critical 
case when the maximum acceleration becomes 
equal to that of free fall. The textbook notes (in the 
discussion immediately after Eq.15-7) that the accele- 
ration amplitude is am = ω 

2xm, where ω is the angu- 
lar frequency; this is the expression we set equal to 
g = 9.8 m/s2.  (a) Using Eq. 15-5 and T = 1.0 s, we 
have 

(2π/T)2 xm = g ⇒ xm = gT 
2/4π 

2 = 0.25 m. 
(b) Since ω = 2πf, and xm = 0.050 m is given, we find 

(2π f)2xm = g  ⇒  f =
π2
1

mx
g = 2.2 Hz.. 

24. Let the spring constants be k1 and k2. When 
displaced from equilibrium, the magnitude of the 
net force exerted by the springs is |k1x+k2x| acting in 
a direction so as to return the block to its equilibri- 
um position (x = 0). Since the acceleration a = 
d2x/d2t, Newton’s second law yields 

m (d2x/dt2) = −k1x − k2x . 
Substituting x = xmcos(ωt+φ) and simplifying, we find 

ω 
2 =

m
1 (k1+k2), 

where ω is in radians per unit time. Since there are 
2π radians in a cycle, and frequency f measures 
cycles per second, we obtain 

f =
π
ω
2

=
π2
1 )(1

21 kk
m

+ . 

The single springs each acting alone would produce 
simple harmonic motions of frequency 

f1 = π2
1

m
k1 = 30 Hz  and  f2 = π2

1
m
k2 = 45 Hz, 

respectively. Comparing these expressions, it is clear that 

f = 2
2

2
1 ff + = 22 )45()30( + = 54 (Hz). 

26. In order to find the effective spring constant for 
the combination of springs shown in Fig. 15-35, we 
do this by finding the magnitude F of the force 
exerted on the mass when the total elongation of the 
springs is Δx. Then keff = F/Δx. Suppose the left- 
hand spring is elongated by Δxl and the right-hand 
spring is elongated by Δxr. The left-hand spring 
exerts a force of magnitude kΔxl on the right-hand 
spring and the right-hand spring exerts a force of 
magnitude kΔxr on the left-hand spring. By New- 
ton’s third law these must be equal, so Δxl = Δxr. The 
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two elongations must be the same and the total 
elongation is twice the elongation of either spring: 
Δx = 2Δxl. The left-hand spring exerts a force on 
the block and its magnitude is F = kΔxl. Thus keff = 
kΔxl/2Δxr = k/2. The block behaves as if it were 
subject to the force of a single spring, with spring 
constant k/2. To find the frequency of its motion 
replace keff in f = (1/2π)(keff/m)1/2 with k/2 to obtain 

f =
π2
1

m
k

2
. 

With m = 0.245 kg and k = 6430 N/m, the frequency 
is  f = 18.2 Hz. 
31. The total energy is given by E = (½)kxm

2, where 
k is the spring constant and xm is the amplitude. We 
use the answer from part (b) to do part (a), so it is 
best to look at the solution for part (b) first.  (a) 
The fraction of the energy that is kinetic is 

E
K =

E
UE − = 1−

E
U = 1−

4
1 = 0.75, 

where the result from part (b) has been used.  (b) 
When x = xm/2 the potential energy is U = (½)kx 

2 = 
(1/8)kxm

2 . The ratio is 

E
U =

2/
8/

2

2

m

m

kx
kx =

4
1 = 0.25 . 

(c) Since E = (½)kxm
2 and U = (½)kx 

2, U/E = x 
2/xm

2. 
We solve x 

2/xm
2 = 1/2 for x. We should obtain x = 

xm/21/2. 
37. The problem consists of two distinct parts: the 
completely inelastic collision (which is assumed to 
occur instantaneously, the bullet embedding itself in the 
block before the block moves through significant 
distance) followed by simple harmonic motion (of 
mass m+M attached to a spring of spring constant k).  
(a) Momentum conservation readily yields v´ = 
mv/(m+M). With m = 9.5 g, M = 5.4 kg and v = 630 
m/s, we obtain v’ = 1.1 m/s.  (b) Since v’ occurs at 
the equilibrium position, then v’ = vm for the simple 
harmonic motion. The relation vm = ωxm can be 
used to solve for xm, or we can pursue the alternate 
(though related) approach of energy conservation. 
Here we choose the latter: 

2
1 (m+M)v’2 =

2
1 kxm

2 ⇒ 
2
1 (m+M)

2

22

)( Mm
vm

+
=

2
1 kxm

2, 

which simplifies to 

mx  =
)( Mmk

mv
+

=
)4.5105.9)(6000(

)630)(105.9(
3

3

+×

×
−

−
 

= 3.3×10−2 (m). 
43. (a) A uniform disk pivoted at its center has a 
rotational inertia of (½)Mr 

2, where M is its mass 
and r is its radius. The disk of this problem rotates 
about a point that is displaced from its center by 
r+L, where L is the length of the rod, so, according 
to the parallel-axis theorem, its rotational inertia is 

(½)Mr 
2+M(L+r)2. The rod is pivoted at one end and 

has a rotational inertia of mL2/3, where m is its mass. 
The total rotational inertia of the disk and rod is 

I =
2
1 Mr 

2 + M(L+r)2 +
2
1 mL2 =

2
1 (0.500)(0.100)2 

+ (0.500)(0.500+0.100)2 +
2
1 (0.270)(0.500)2 

= 0.205 (kg·m2). 
(b) We put the origin at the pivot. The center of 
mass of the disk is 

ld = L + r = 0.500 m + 0.100 m = 0.600 m, 
away and the center of mass of the rod is lr = L/2 = 
(0.500 m)/2 = 0.250 m away, on the same line. The 
distance from the pivot point to the center of mass 
of the disk-rod system is 

d =
mM
mM rd

+
+ ll =

mM
mM

+
+ ll = 0.477 (m) 

=
270.0500.0

)250.0)(270.0()600.0)(500.0(
+
+ . 

(c) The period of oscillation is 

T = 2π
gdmM

I
)( +

= 1.50 (s) 

= 2π
)447.0)(80.9)(270.0500.0(

205.0
+

. 

76.• (a) The problem gives the frequency f = 440 Hz, 
which means a cycle-per-second. The unit of angu- 
lar frequency ω is in radians-per-second. Recalling 
that 2π radians are equivalent to a cycle, we have ω 
= 2πf ≈ 2.8×103 rad/s.  (b) In the discussion imme- 
diately after Eq. 15-6, the book introduces the 
velocity amplitude vm = ω xm. With xm = 0.00075 m 
and the above value for ω, this expression yields vm 
= 2.1 m/s. (c) In the discussion immediately after Eq. 
15-7, the book introduces the acceleration ampli- 
tude am = ω 

2xm, which (if the more precise value ω 
= 2765 rad/s is used) yields am = 5.7 km/s2. 
83.• (a) We use Eq.15-29 and the parallel-axis theo- 
rem I = Icm+mh2 where h = R = 0.126 m. For a solid 
disk of mass m, the rotational inertia about its 
center of mass is Icm = (½)mR 

2. Therefore, 

T = 2π
mgR

mRmR 2/22 + = 2π
g
R

2
3 = 0.873 (s). 

(b) We seek a value of r ≠ R such that 

2π
gr

rR
2

2 22 + = 2π
g
R

2
3  

and are led to the quadratic formula: 
r =

4
1 [ 22 8)3(3 RRR −± ]= R or

2
1 R. 

Thus, our result is r = 0.126/2 = 0.0630 m. 
95.AP (a) We require U = E/2 at some value of x. 
Using Eq. 15-21, this becomes 

2
1 kx 

2 =
2
1 (

2
1 kxm

2)  ⇒  x =
2

1 xm. 
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We compare the given expression x as a function of 
t with Eq. 15-3 and find xm = 5.0 m. Thus, the value 
of x we seek is x = 5.0/21/2 ≈ 3.5 (m).  (b) We 
solve the given expression (with x = 5.0/21/2), mak- 
ing sure our calculator is in radians mode: 

t =
4
π +

π
3 cos−1(

2
1 ) = 1.54 (s). 

Since we are asked for the interval teq – t where teq 
specifies the instant the particle passes through the 
equilibrium position, then we set x = 0 and find 

t =
4
π +

π
3 cos−1(0) = 2.29 (s). 

Consequently, the time interval is teq – t = 0.75 s. 
96.• (a) The potential energy at the turning point is 
equal (in the absence of friction) to the total kinetic 
energy (translational plus rotational) as it passes 
through the equilibrium position: 

2
1 kxm

2 =
2
1 Mvcm

2 +
2
1 Icmω 

2 =
2
1 Mvcm

2 

+
2
1 (

2
1 MR2)(

R
vcm )2 =

2
1 Mvcm

2 +
4
1 Mvcm

2 =
4
3 Mvcm

2, 

which leads to Mvcm
2 = (⅔)kxm

2 = 0.125 J. The trans- 
lational kinetic energy is therefore (½)Mvcm

2 = (⅓) 
kxm

2 = 0.0625 J. (b) And the rotational kinetic ener- 
gy is (¼)Mvcm

2 = kxm
2/6 = 0.03125 J = 3.13× 10−2 J.  

(c) In this part, we use vcm to denote the speed at 
any instant (and not just the maximum speed as we had 
done in the previous parts). Since the energy is 
constant, then 

dt
dE =

dt
d (

4
3 Mvcm

2) +
dt
d (

2
1 kx2) 

=
2
3 Mvcmacm + kxvcm = 0, 

which leads to acm = −(⅔)(k/M)x. Comparing with 
Eq. 15-8, we see that ω = (2k/3M)1/2 for this system. 
Since ω = 2π/T, we obtain the desired result: T = 
2π(3M/2k)1/2. 

重點整理－第 15 章 振盪 
訓練有素跳水選手之高彈跳秘密為何？ 

♦振動 質點(物體)作來回往復運動； 

oscillation 振盪; vibration 振動; oscillator 振子; resona- 
nce 共振; (simple) pendulum(單)擺; physical pendulum
物理擺; bob 吊錘; suspension point 懸點; fulcrum 支點; 
torsion pendulum/constant 扭擺/扭力常數; simple har- 
monic motion (SHM)簡諧運動; restoring force/torque回
復力/力矩; cycle 循環; period 週期; (angular) frequency 
(角)頻率, amplitude 振幅; phase constant/angle 相位常

數/角; phase 相位; hertz (Hz)赫; damping force/constant
阻尼力/常數; forced/driven oscillation 強迫/軀駛振盪; 
hallmark 特徵; •備忘錄• 
 

♦週期運動 振動系統(物體)一而再地重覆相同運

動或任何運動有規律地在一定時間距內重現！ 
週期 T：完成一完整振動所需的時間，單位：

second (s)； 頻率ƒ：單位時間完成振動循環之

次數，單位：Hz (≡ s−1)； 振幅 xm(> 0)：物體偏

離平衡位置之最大位移量。Note f = 1/T； 
簡諧運動(SHM) 質點之位移與時間的關係為諧

和函數(S: Simple, 振幅 xm = const, H: Harmonic), 

x(t) = xmcos(ωt+φ) or x(t) = xmsin(ωt+φ) 
x(t)：位移，xm：振幅，ωt+φ：相位， 
角頻率ω (in rad/s)：ω T = 2π ⇒ ω = 2π/T = 2π f 
速度 v(t) = dx/dt = −ωxmsin(ωt+φ)， 
♦速度振幅(速率最大值) vm = ωxm， 
加速度 a(t) = dv/dt = −ω 

2xmsin(ωt+φ)， 
♦加速度振幅 am = ω 

2xm； a(t) = −ω 
2x(t)， 

(1)加速度大小正比於物體偏離平衡之位移大小

且(2)兩者永遠反向。 
簡諧運動之作用力 

    F(t) = ma(t) = −mω 
2 x(t) ─回復力， 

木塊(m)-彈簧(k)系統 ω 
2 = k/m or ω = mk / ， 

  f = ω(2π)−1 = (2π)−1 mk / ，T = 1/f = 2π km / ， 
簡諧運動之能量：系統無耗能機制時， 

力學能 E = 動能 K + 位能 U = 常數。 
系統之動能及位能持續交換，但其總和仍不變！ 
木塊(m)及彈簧(k)系統 

E =
2
1 mv 

2 +
2
1 kx2 =

2
1 kxm

2 = cont. 

單擺：一理想化模型，質點由無質量之弦懸掛。

小角度(|θ| « 1)擺動為簡諧運動：角頻率ω：ω 
2 = 

g/L，頻率ƒ = ω/(2π) or ƒ = (2π)−1 Lg / ， 
週期 T = 2π gL / ，只與擺長 L 及重力加速度 g

有關，而與質量 m 無關。♠擺長 L = 1.00 m ⇒ T = 
2.007 s；L = 2.45 m ⇒ T = 3.14 s (g = 9.80 m/s2)。 
♦弦與鉛直線之夾角 θ(t) = θm cos( Lg / t +φ). 
Note 單擺以有限擺角θM擺動時，其週期 

T = 2π gL / [1 +
4
1 sin2(

2
1 θM) +… ]  

物理擺：真實的擺，小角度(|θ| « 1)擺動為簡諧運

動，ω 
2 = mgh/I，ƒ = ω/2π = (1/2π)(mgh/I)½ or T = 

2π(I/mgh)½，I = 轉動慣量，h = 重心至懸點之距。 
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49. If the torque exerted by the spring on the rod is 
proportional to the angle of rotation of the rod and 
if the torque tends to pull the rod toward its equili- 
brium orientation, then the rod will oscillate in 
simple harmonic motion. If τ = –Cθ, where τ is the 
torque, θ is the angle of rotation, and C is a constant 
of proportionality, then the angular frequency of 
oscillation is ω = (C/I)1/2 and the period is T = 2π/ω 
= 2π(I/C)1/2, where I is the rotational inertia of the 
rod. The plan is to find the torque as a function of θ 
and identify the constant C in terms of given 
quantities. This immediately gives the period in 
terms of given quantities. Let l0 be the distance 
from the pivot point to the wall. This is also the 
equilibrium length of the spring. Suppose the rod 
turns through the angle θ, with the left end moving 
away from the wall. This end is now (½)L sinθ 
further from the wall and has moved a distance 
(½)L(1−cosθ) to the right. The length of the spring 
is now { (L/2)2(1−cosθ)2 + [l0+(L/2)sinθ]2 }1/2. If 
the angle θ is small we may approximate cosθ with 
1 and sinθ with θ in radians. Then the length of the 
spring is given by l0+(½)Lθ and its elongation is Δx 

= (½)Lθ. The force it exerts on the rod has magni- 
tude F = kΔx = (½)kLθ. Since θ is small we may 
approximate the torque exerted by the spring on the 
rod by τ = –F(½)L, where the pivot point was taken 
as the origin. Thus τ = –(¼)(kL2)θ. The constant of 
proportionality C that relates the torque and angle 
of rotation is C = (¼)kL2. The rotational inertia for a 
rod pivoted at its center is I = mL2/12, where m is its 
mass. Thus the period of oscillation is 

T = 2π
C
I = 2π

4/
12/

2

2

kL
mL = 2π

k
m
3

. 

With m = 0.600 kg and k = 1850 N/m, we obtain T 
= 0.0653 s. (cf. S.P. 15-6) 

圓柱體(截面積 A)浮於水面，平衡時沒入水中

之深度 h，稍微鉛直下壓後放手，Q.圓柱體作

SHM？ U 型管內裝液體(液柱總長度為l)，當液

面些微擾動時，作 SHM？ 某半徑為 R 之均質

圓球以一細弦懸掛著，試證明當圓球小角度擺動

時作 SHM，並求其週期。設細弦質量可忽略及懸

點至球心之距為 L。•備忘錄• 

 


