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Chapter 14  Fluids

01. The air inside pushes outward with a force
given by pA, where p; is the pressure inside the
room and A is the area of the window. Similarly, the
air on the outside pushes inward with a force given
by p.A, where p, is the pressure outside. The
magnitude of the net force is F = (pi—po)A. Since 1
atm = 1.013x10°> Pa, F = (1.0 atm — 0.96 atm)
(1.013x10° Pa/atm)(3.4 m)(2.1 m) = 2.9x10* N.

05. Let the volume of the expanded air sacs be V,
and that of the fish with its air sacs collapsed be V.
Then prign = Misn/V = 1.08 g/cm® and p,, = Mg/
(V+V,) = 1.00 g/lcm® , where p,, is the density of the
water. This implies  prshV = pu(V+Va) or (V+V)/IV
=1.08/1.00, which gives Vu/(V+V,) =7.4% .

07. (a) The pressure difference results in forces
applied as shown in the figure. We consider a team
of horses pulling to the right. To pull the sphere
apart, the team must exert a force at least as great as
the horizontal component of the total force deter-
mined by “summing” (actually, integrating) these
force vectors. We consider a force vector at angle 6.
Its leftward component is Apcos@dA, where dA is
the area element for where the force is applied. We
make use of the symmetry of the problem and let
dA be that of a ring of constant & on the surface.
The radius of the ring is r = Rsing, where R is the
radius of the sphere. If the angular width of the ring
is d6, in radians, then its width is R d@ and its area
is dA = 22R%sin@dé. Thus the net horizontal compo-
nent of the force of the air is given by

B 2 72
F =22R"Ap . sin @ cos &do

= 2R?*Apsin? 0|22 = 2R Ap.

(b) We use 1 atm = 1.01x10° Pa to show that Ap =
0.90 atm = 9.09x10* Pa. The sphere radius is R =
0.30 m, so F, = 7(0.30 m)*(9.09x10* Pa) = 2.6x10"
N. (c) One team of horses could be used if one
half of the sphere is attached to a sturdy wall. The
force of the wall on the sphere would balance the
force of the horses.
11. The pressure p at the depth d of the hatch cover
is po + pgd, where p is the density of ocean water
and po is atmospheric pressure. The downward
force of the water on the hatch cover is (po+pgd)A,
where A is the area of the cover. If the air in the
submarine is at atmospheric pressure then it exerts
an upward force of pyA. The minimum force that must
be applied by the crew to open the cover has magnitude

F = (po+pgd)A — poA = pgdA

= (1024 kg/m?)(9.8 m/s?)(100 m)(1.2 m)(0.60 m)

=7.2x10° N.
08. Note that 0.05atm equals 5065N/m?” Applica-
tion of Eq. 14-7 with the notation in this prob. leads

t0  dmax = 5065/ piiquiad, With Sl units understood.
Thus the difference of this quantity between fresh
water (998 kg/m?) and Dead Sea water (1500 kg/m®) is

5065 , 1 1
Oax = (==~ ) =0.17 (m).

9.8 998 1500

15. When the levels are the same the height of the
liquid is h = (h;+h,)/2, where h; and h, are the
original heights. Suppose h; is greater than h,. The
final situation can then be achieved by taking liquid
with volume A(h;—h) and mass pA(h;—h), in the first
vessel, and lowering it a distance h — h,. The work
done by the force of gravity is W = pA(h—h)g
(h=hy).  We substitute h = (h;+h,)/2 to obtain

W = (¥a) pgA(hu—hy)?

= (¥4)(1.30x10%)(9.80)(4.00x107*)(1.56-0.854)?

=0.635 (J).
19. (a) At depth y the gauge pressure of the water is
p = pgy, where p is the density of the water. We
consider a horizontal strip of width W at depth v,
with (vertical) thickness dy, across the dam. Its area
is dA = Wdy and the force it exerts on the dam is dF
= pdA = pgyWdy. The total force of the water on the
dam is

D
F =f0 pg\/\/ydy=%ngD2 =%(l.00><103 kg/m?)

(9.80 m/s?)(314 m)(35.0m)? =1.88x10° N
(b) Again we consider the strip of water at depth y.
Its moment arm for the torque it exerts about O is
D - y so the torque it exerts is dz = dF(D-y) =
P9yW(D-y)dy and the total torque of the water is

D 11 1
r=[ POW(D-y)dy = pgW(—)D® = pgWD?®
:% (1.00x10%)(9.80)(314)(35.0)* =2.20x10° N-m

(c) We write == rF, where r is the effective moment
arm. Then,

_t_pgwD®/6_D _350 117 (m).
F ngD2 /12 3 3
20. The gauge pressure you can produce is
= —pgh = —(1000)(9.8)(4.0x107%)/(1.01x10°)
=-3.9x10°2 (atm),
where the minus sign indicates that the pressure
inside your lung is less than the outside pressure.

22. (a) According to Pascal’s principle F/IA= fla=

F = (Aa)f. (b)We obtain
2
_ 3 p B8 004 10° N) =103 N,
A (53.0 cm)

The ratio of the squares of diameters is equivalent

to the ratio of the areas. We also note that the area

units cancel.

26. (a) The pressure (including the contribution from

the atmosphere) at a depth of hy, = L/2 (corresponding
Chapter 14, HRW 04, NTOUcs960101



to the top of the block) is
Prop = Pam + £9Ntop = [1.01x10° + (1030)(9.8)(0.300)]
= 1.04x10° (Pa),
where the unit Pa (Pascal) is equivalent to N/m?.
The force on the top surface (of area A= L* = 0.36
m?) is Fip = PropA = 3.75x10% N. (b) The pressure at
a depth of hy, = 3L/2 (that of the bottom of the block)
is pbot = patm + pghbot
= [1.01x10° + (1030)(9.8)(0.900)] = 1.10x10° (Pa),
where we recall that the unit Pa (Pascal) is equiva-
lent to N/m?. The force on the bottom surface is Fyq
= PooiA = 3.96x10% N. (c) Taking the difference
Foor—Fiwp cancels the contribution from the atmo-
sphere (including any numerical uncertainties associated
with that value) and leads to
Foot — Fiop = 09(Noot—top) A = ng3 = 2.18x10° (N),
which is to be expected on the basis of Archimedes’
principle. Two other forces act on the block: an up-
ward tension T and a downward pull of gravity mg.
To remain stationary, the tension must be
T =mg — (Fpor—Ftop) = (450)(9.80)
—2.18x10° = 2.23x10° (N).
(d) This has already been noted in the previous part:
Fp=2.18x10°N, and T+ Fp = mg.
29. (a) Let V be the volume of the block. Then, the
submerged volume is Vs = 2V/3. Since the block is
floating, the weight of the displaced water is equal
to the weight of the block, so p,Vs = p,V, where py,
is the density of water, and p, is the density of the
block. We substitute Vs = 2V/3 to obtain
o= 20443 = 2(1000 kg/m?)/3 = 6.7x10% kg/m°.
(b) If p, is the density of the oil, then Archimedes’
principle yields pVs = V. We substitute Vs =
0.90V to obtain p, = p,/0.90 = 7.4x10? kg/m®.
43. Suppose that a mass Am of water is pumped in
time At. The pump increases the potential energy of
the water by Amgh, where h is the vertical distance
through which it is lifted, and increases its Kinetic
energy by (Y¥2)Amv?, where v is its final speed. The
work it does is W = Amgh+(%)Amv? and its power is

AU At 2
Now the rate of mass flow is Am/At = p,Av, where
pw 1S the density of water and A is the area of the
hose. The area of the hose is A= zr?= 7(0.010 m)?
= 3.14x10™*m? and p,Av = (1000kg/m3)(3.14x10™*
m?)(5.00 m/s) = 1.57 kg/s. Thus,
P =pAv[pg+2 v?] = (1.57 kg/s)[(9.80 m/s*)(3.0 m)

+ (%)(5.0 m/s)’] = 66 W.
45. (a) We use the Eq. of continuity: Av; = AxVs.
Here A, is the area of the pipe at the top and v; is
the speed of the water there; A, is the area of the
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pipe at the bottom and v, is the speed of the water
there. Thus v, = (AJ/Ay)vy = [(4.0 cm?)/(8.0 cm?)]
(5.0 m/s) = 2.5m/s.

(b) We use the Bernoulli Eq.: py + (¥2)ovi” + pghy = p2
+ (Y)pv,” + pgh, , where p is the density of water,
h; is its initial altitude, and h, is its final altitude.
Thus P2 = P1 +% pvi*=v2%) + pg(hy—hy)
=1.5x10° +2 (1.0x10%)(5.0%-2.5%)

+ (1.0x10%)(9.8)(10) = 2.6x10° (Pa).
54. (a) The volume of water (during 10 minutes) is
V = (v 1)A; = (15 m/s)(10 min)(60 s/min)(n/4) (0.03

m)>=6.4m®. (b) The speed in the left section of
pipe is
d 3.0
v, = vl(%) = (G’ = 09" =54(ms)

(c) Since py + (Y2)pvi% + pghy = s + (Y2) oV + pghy
and hy = hy, p1 = po, Which is the atmospheric
pressure,

P2 = Po+3 p(Vi*-V,") = 1.01x10° + 2 (1.0x10°)

(15°-5.4%) = 1.99x10° (Pa) = 1.97 (atm).
Thus the gauge pressure is (1.97 atm — 1.00 atm) =
0.97 atm = 9.8x10° Pa.
55. (a) Since S.P. 14-8 deals with a similar situation,
we use the final Eq. (labeled “Answer”) from it: v
= (2gh)? = v = v, for the projectile motion. The
stream of water emerges horizontally (6, = 0° in the
notation of Chapt. 4), and setting y — yo = —(H-h) in
Eq. 4-22, we obtain the “time-of-flight”

tzJ—_Z(H —h) =\/3(H—h) .
-9 g

Using this in Eq. 4-21, where X, = 0 by choice of
coordinate origin, we find

X = Vot =4/2ghy/2(H —h)/ g = 2,/h(H — h)
=2,/10(40 -10) = 35 (m).

(b) The result of part (a) (which, when squared,
reads x* = 4h(H-h)) is a quadratic Eq. for h once x
and H are specified. Two solutions for h are there-
fore mathematically possible, but are they both
physically possible? For instance, are both solutions
positive and less than H? We employ the quadratic
formula:

hZ—Hh+%x2=0:>h=%(H +H2 - x?),

which permits us to see that both roots are physi-
cally possible, so long as x < H. Labeling the larger
root h; (where the plus sign is chosen) and the
smaller root as h, (where the minus sign is chosen),
then we note that their sum is simply

hl+h2:%(H +y/H?2 —x2)+%(H —yHZ-x%)=H.

Thus, one root is related to the other (generically
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labeled h' and h) by h' = H — h. Its numerical value
ish =40 cm — 10 cm = 30 cm.  (¢) We wish to
maximize the function f = x? = 4h(H-h). We differ-
entiate with respect to h and set equal to zero to
obtain
dffdh=4H-8h=0 = h=H/2,

or h = (40 cm)/2 = 20 cm, as the depth from which
an emerging stream of water will travel the maxi-
mum horizontal distance.

69.° (a) We consider a point D on the surface of the
liquid in the container, in the same tube of flow
with points A, B and C. Applying Bernoulli’s Eq. to
points D and C, we obtain

Po +%,0VD2 + pghp = pPc +%PV(:2 + pghc,
which leads to

Vc=\/2(pr_ pC)+2g(hD—hc)+V% ~4/29(d+h,).

where in the last step we set pp = pc = Pair and Vp/Ve
~ 0. Plugging in the values, we obtain

Ve =4/2(9.8)(0.40 +0.12) = 3.2 (M/s).
(b) We now consider points B and C:

Ps+3 AV’ + pghe = e+ pve” + pghc .
Since vg = V¢ by EqQ. of continuity, and pc = Pair,
Bernoulli’s Eq. becomes

P = Pc + LY(hc—hg) = Pair — pY(M+hy+d)

=1.0x10° — (1.0x10%)(9.8)(0.25+0.40+0.12)
=9.2x10* (Pa).
(c) Since pg >0, we must let pyir — pg(hy + d + hy) >
0, which yields

hy < My =280 — d — hy <-Pair =103 m,
P P

80.° The absolute pressure is
P = po + pgh = 1.01x10° Pa + (1.03x10° kg/m?)
(9.80 m/s?)(150 m) = 1.62x10* Pa.
84." (a) Using Eq. 14-10, we have py = pgh = 1.21x
10’ Pa. (b) By definition, p = py + Pam = 1.22x10’
Pa. (c) We interpret the question as asking for the
total force compressing the sphere’s surface, and we
multiply the pressure by total area: p(4zr?) = 3.82
x10° N. (d) The (upward) buoyant force exerted on
the sphere by the seawater is F, = 0,9V, where V =
(4/3) zr*. Therefore, F, = 5.26N. (e) Newton’s second
law applied to the sphere (of mass m = 7.00 kg)
yields F, — mg = ma, which results in a = -9.04
m/s®, which means the acceleration vector has a
magnitude of 9.04m/s% (f) The direction is down-
ward.
92.° (a) We assume that the top surface of the slab is
at the surface of the water and that the automobile
is at the center of the ice surface. Let M be the mass
of the automobile, o be the density of ice, and o,
be the density of water. Suppose the ice slab has

PFRE S KEYFr iR
area A and thickness h. Since the volume of ice is
Ah, the downward force of gravity on the auto-
mobile and ice is (M+pAh)g. The buoyant force of
the water is p,Ahg, so the condition of equilibrium
is (M+pAh)g — pAhg = 0 and

M _ 1100 _

" (py—pi)h  (998-917)(0.30)
These density values are found in Table 14-1 of the text.
(b) 1t does matter where the car is placed since the
ice tilts if the automobile is not at the center of its
surface.
91.° Equilibrium of forces (on the floating body) is
expressed as  Fp = Moy = Piiquiad Vsubmerged =
Poody 9 Viotal ,» Which leads to

Vsubmerged _ pbody

45 (md).

Viotal Pliquid

We are told (indirectly) that two-thirds of the body is
below the surface, so the fraction above is 2/3. Thus,
With puoay = 0.98g/cm?, we find piquia ~ 1.5g/cm® —
certainly much more dense than normal seawater
(the Dead Sea is about seven times saltier than the ocean
due to the high evaporation rate and low rainfall in that
region).

59.* (a) The continuity Eq. yields Av = aV, and
Bernoulli’s Eq. yields Ap + (%) pov? = (¥2) pV?, where
Ap = p; — p2. The first Eq. gives V = (A/a)v. We use
this to substitute for V in the second Eq., and obtain
Ap + (B)pv? = () p(Aa)?VZ We solve for v. The
result is

V= 2Ap _ | 2a’ap
pl(A?1a%)-1] | p(A2-1)

(b) We substitute values to obtain

_ |_2(32x107*)(85x10° - 41x10°)

(1000)[(64 x10™*)? - (32x107%)?]

Consequently, the flow rate is  Av = (64x10™* m?)
(3.06 m/s) = 2.0x10 2 m?/s .
61.* (a) Bernoulli’s Eq. gives pa = pg +(%2) o2, But
Ap = pa — Pe. = pgh in order to balance the pressure
in the two arms of the U-tube. Thus pgh = (Vz)pair\/z,

or V= Zpgh.
Pair
(b) The plane’s speed relative to the air is
ve \/2(810)(9.8)(0.260) - 63.3 (M),
1.03

= 3.06 (m/s).
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P2 = p1 + POY1Yo)- (14-7)
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p=po+ pgh, (14-8)
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Weightapp = weight — Fy (14-19)

2 e ar A an g RV EL T AR S R
{E R i fﬁ;ﬁjt PRE LY Y "'BZ—EU o ﬁtgrlfﬂ
FE';’E’T%&EI’?WFI FURE 2 o s F R %Zﬁqfh@ ke
[ PRE R e A

R, = Av = Fﬁj‘g\'r, (12-25)
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