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Chapter 14  Fluids 
01. The air inside pushes outward with a force 
given by piA, where pi is the pressure inside the 
room and A is the area of the window. Similarly, the 
air on the outside pushes inward with a force given 
by poA, where po is the pressure outside. The 
magnitude of the net force is F = (pi−po)A. Since 1 
atm = 1.013×105 Pa, F = (1.0 atm − 0.96 atm) 
(1.013×105 Pa/atm)(3.4 m)(2.1 m) = 2.9×104 N. 
05. Let the volume of the expanded air sacs be Va 
and that of the fish with its air sacs collapsed be V. 
Then  ρfish = mfish/V = 1.08 g/cm3 and ρw = mfish/ 
(V+Va) = 1.00 g/cm3 , where ρw is the density of the 
water. This implies  ρfishV = ρw(V+Va) or (V+Va)/V 
= 1.08/1.00, which gives  Va/(V+Va) = 7.4% . 
07. (a) The pressure difference results in forces 
applied as shown in the figure. We consider a team 
of horses pulling to the right. To pull the sphere 
apart, the team must exert a force at least as great as 
the horizontal component of the total force deter- 
mined by “summing” (actually, integrating) these 
force vectors. We consider a force vector at angle θ. 
Its leftward component is ΔpcosθdA, where dA is 
the area element for where the force is applied. We 
make use of the symmetry of the problem and let 
dA be that of a ring of constant θ on the surface. 
The radius of the ring is r = Rsinθ, where R is the 
radius of the sphere. If the angular width of the ring 
is dθ, in radians, then its width is R dθ and its area 
is dA = 2πR2sinθdθ. Thus the net horizontal compo- 
nent of the force of the air is given by 
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(b) We use 1 atm = 1.01×105 Pa to show that Δp = 
0.90 atm = 9.09×104 Pa. The sphere radius is R = 
0.30 m, so Fh = π(0.30 m)2(9.09×104 Pa) = 2.6×104 
N.  (c) One team of horses could be used if one 
half of the sphere is attached to a sturdy wall. The 
force of the wall on the sphere would balance the 
force of the horses. 
11. The pressure p at the depth d of the hatch cover 
is p0 + ρgd, where ρ is the density of ocean water 
and p0 is atmospheric pressure. The downward 
force of the water on the hatch cover is (p0+ρgd)A, 
where A is the area of the cover. If the air in the 
submarine is at atmospheric pressure then it exerts 
an upward force of p0A. The minimum force that must 
be applied by the crew to open the cover has magnitude 
 F = (p0+ρgd)A – p0A = ρgdA  
 = (1024 kg/m3)(9.8 m/s2)(100 m)(1.2 m)(0.60 m) 
 = 7.2×105 N. 
08. Note that 0.05 atm equals 5065 N/m2. Applica- 
tion of Eq. 14-7 with the notation in this prob. leads 

to  dmax = 5065/ρliquidg, with SI units understood.  
Thus the difference of this quantity between fresh 
water (998 kg/m3) and Dead Sea water (1500 kg/m3) is 

　dmax = )
1500

1
998
1(

8.9
5065

−  = 0.17 (m). 

15. When the levels are the same the height of the 
liquid is h = (h1+h2)/2, where h1 and h2 are the 
original heights. Suppose h1 is greater than h2. The 
final situation can then be achieved by taking liquid 
with volume A(h1–h) and mass ρA(h1–h), in the first 
vessel, and lowering it a distance h – h2. The work 
done by the force of gravity is   W = ρA(h1–h)g 
(h–h2).  We substitute h = (h1+h2)/2 to obtain  
 W = (¼)ρgA(h1–h2)2  
 = (¼)(1.30×103)(9.80)(4.00×10–4)(1.56–0.854)2  
 = 0.635 (J). 
19. (a) At depth y the gauge pressure of the water is 
p = ρgy, where ρ is the density of the water. We 
consider a horizontal strip of width W at depth y, 
with (vertical) thickness dy, across the dam. Its area 
is dA = Wdy and the force it exerts on the dam is dF 
= pdA = ρgyWdy. The total force of the water on the 
dam is 
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(b) Again we consider the strip of water at depth y. 
Its moment arm for the torque it exerts about O is 
D – y so the torque it exerts is dτ = dF(D–y) = 
ρgyW(D–y)dy and the total torque of the water is 
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(c) We write τ = rF, where r is the effective moment 
arm. Then, 
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20. The gauge pressure you can produce is 
p = –ρgh = –(1000)(9.8)(4.0×10−2)/(1.01×105) 

= –3.9×10−3 (atm), 
where the minus sign indicates that the pressure 
inside your lung is less than the outside pressure. 
22. (a) According to Pascal’s principle F/A = f/a ⇒ 
F = (A/a)f.  (b) We obtain 
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The ratio of the squares of diameters is equivalent 
to the ratio of the areas. We also note that the area 
units cancel. 
26. (a) The pressure (including the contribution from 
the atmosphere) at a depth of htop = L/2 (corresponding 
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to the top of the block) is 
ptop = patm + ρghtop = [1.01×105 + (1030)(9.8)(0.300)] 

  = 1.04×105 (Pa), 
where the unit Pa (Pascal) is equivalent to N/m2. 
The force on the top surface (of area A = L2 = 0.36 
m2) is Ftop = ptopA = 3.75×104 N. (b) The pressure at 
a depth of hbot = 3L/2 (that of the bottom of the block) 
is        pbot = patm + ρghbot  
= [1.01×105 + (1030)(9.8)(0.900)] = 1.10×105 (Pa), 
where we recall that the unit Pa (Pascal) is equiva- 
lent to N/m2. The force on the bottom surface is Fbot 
= pbotA = 3.96×104 N. (c) Taking the difference 
Fbot–Ftop cancels the contribution from the atmo- 
sphere (including any numerical uncertainties associated 
with that value) and leads to 
Fbot − Ftop = ρg(hbot−htop)A = ρgL3 = 2.18×103 (N), 

which is to be expected on the basis of Archimedes’ 
principle. Two other forces act on the block: an up- 
ward tension T and a downward pull of gravity mg. 
To remain stationary, the tension must be 

T = mg − (Fbot−Ftop) = (450)(9.80) 
− 2.18×103 = 2.23×103 (N). 

(d) This has already been noted in the previous part: 
Fb = 2.18×103 N, and T + Fb = mg. 
29. (a) Let V be the volume of the block. Then, the 
submerged volume is Vs = 2V/3. Since the block is 
floating, the weight of the displaced water is equal 
to the weight of the block, so ρwVs = ρbV, where ρw 
is the density of water, and ρb is the density of the 
block. We substitute Vs = 2V/3 to obtain  
ρb = 2ρw/3 = 2(1000 kg/m3)/3 = 6.7×102 kg/m3. 

(b) If ρo is the density of the oil, then Archimedes’ 
principle yields ρoVs = ρbV. We substitute Vs = 
0.90V to obtain ρo = ρb/0.90 = 7.4×102 kg/m3. 
43. Suppose that a mass Δm of water is pumped in 
time Δt. The pump increases the potential energy of 
the water by Δmgh, where h is the vertical distance 
through which it is lifted, and increases its kinetic 
energy by (½)Δmv 

2, where v is its final speed. The 
work it does is W = Δmgh+(½)Δmv 

2 and its power is 
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Now the rate of mass flow is Δm/Δt = ρwAv, where 
ρw is the density of water and A is the area of the 
hose. The area of the hose is A = π r 

2 = π(0.010 m)2 
= 3.14×10–4

 m2 and ρwAv = (1000 kg/m3)(3.14×10–4 
m2)(5.00 m/s) = 1.57 kg/s. Thus, 
P =ρAv[ρg + 2

1 v 
2] = (1.57 kg/s)[(9.80 m/s2)(3.0 m) 

                + (½)(5.0 m/s)2] = 66 W. 
45. (a) We use the Eq. of continuity: A1v1 = A2v2. 
Here A1 is the area of the pipe at the top and v1 is 
the speed of the water there; A2 is the area of the 

pipe at the bottom and v2 is the speed of the water 
there. Thus   v2 = (A1/A2)v1 = [(4.0 cm2)/(8.0 cm2)] 
(5.0 m/s) = 2.5m/s. 
(b) We use the Bernoulli Eq.: p1 + (½)ρv1

2 + ρgh1 = p2 
+ (½)ρv2

2 + ρgh2 , where ρ is the density of water, 
h1 is its initial altitude, and h2 is its final altitude. 
Thus    p2 = p1 + 2

1 ρ(v1
2−v2

2) + ρg(h1−h2) 

= 1.5×105 +
2
1 (1.0×103)(5.02−2.52) 

+ (1.0×103)(9.8)(10) = 2.6×105 (Pa). 
54. (a) The volume of water (during 10 minutes) is 
V = (v1 t)A1 = (15 m/s)(10 min)(60 s/min)(π/4) (0.03 
m)2 = 6.4 m3 .  (b) The speed in the left section of 
pipe is 
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(c) Since p1 + (½)ρv1
2 + ρgh1 = p2 + (½)ρv2

2 + ρgh2 
and h1 = h2, p1 = p0, which is the atmospheric 
pressure, 
p2 = p0 + 2

1 ρ(v1
2−v2

2) = 1.01×105 +
2
1 (1.0×103) 

 (152−5.42) = 1.99×105 (Pa) = 1.97 (atm). 
Thus the gauge pressure is (1.97 atm – 1.00 atm) = 
0.97 atm = 9.8×104 Pa. 
55. (a) Since S.P. 14-8 deals with a similar situation, 
we use the final Eq. (labeled “Answer”) from it:  v 
= (2gh)1/2 ⇒ v = v0 for the projectile motion.  The 
stream of water emerges horizontally (θ0 = 0° in the 
notation of Chapt. 4), and setting y – y0 = –(H–h) in 
Eq. 4-22, we obtain the “time-of-flight”  

t =
g

hH
−

−− )(2 = )(2 hH
g

− . 

Using this in Eq. 4-21, where x0 = 0 by choice of 
coordinate origin, we find  

x = vot = )(2/)(22 hHhghHgh −=−  

)1040(102    −= = 35 (m). 
(b) The result of part (a) (which, when squared, 
reads x 

2 = 4h(H–h)) is a quadratic Eq. for h once x 
and H are specified. Two solutions for h are there- 
fore mathematically possible, but are they both 
physically possible? For instance, are both solutions 
positive and less than H? We employ the quadratic 
formula: 

h 
2 − Hh +

4
1 x 

2 = 0 ⇒ h =
2
1 )( 22 xHH −± , 

which permits us to see that both roots are physi- 
cally possible, so long as x ≤ H. Labeling the larger 
root h1 (where the plus sign is chosen) and the 
smaller root as h2 (where the minus sign is chosen), 
then we note that their sum is simply  

h1 + h2 = )(
2
1)(

2
1 2222 xHHxHH −−+−+ = H. 

Thus, one root is related to the other (generically 
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labeled h' and h) by h' = H – h. Its numerical value 
is h’ = 40 cm − 10 cm = 30 cm.  (c) We wish to 
maximize the function f = x 

2 = 4h(H–h). We differ- 
entiate with respect to h and set equal to zero to 
obtain  

df/dh = 4H − 8h = 0  ⇒  h = H/2, 
or h = (40 cm)/2 = 20 cm, as the depth from which 
an emerging stream of water will travel the maxi- 
mum horizontal distance. 
69.• (a) We consider a point D on the surface of the 
liquid in the container, in the same tube of flow 
with points A, B and C. Applying Bernoulli’s Eq. to 
points D and C, we obtain 

pD +
2
1 ρvD

2 + ρghD = pC +
2
1 ρvC

2 + ρghC , 

which leads to 

vc = 2)(2)(2
DCD

CD vhhgpp
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where in the last step we set pD = pC = pair and vD/vC 
≈ 0. Plugging in the values, we obtain 

vc = )12.040.0)(8.9(2 + = 3.2 (m/s). 
(b) We now consider points B and C: 

pB +
2
1 ρvB

2 + ρghB = pC +
2
1 ρvC

2 + ρghC . 

Since vB = vC by Eq. of continuity, and pC = pair, 
Bernoulli’s Eq. becomes 

pB = pC + ρg(hC−hB) = pair − ρg(h1+h2+d) 
= 1.0×105 − (1.0×103)(9.8)(0.25+0.40+0.12) 

= 9.2×104 (Pa). 
(c) Since pB ≥ 0, we must let pair – ρg(h1 + d + h2) ≥ 
0, which yields 

h1 ≤ h1,max = ρ
airp

− d − h1 ≤ ρ
airp = 10.3 m. 

80.• The absolute pressure is 
p = p0 + ρgh = 1.01×103 Pa + (1.03×103 kg/m3) 

(9.80 m/s2)(150 m) = 1.62×104 Pa. 
84.• (a) Using Eq. 14-10, we have pg = ρgh = 1.21× 
107 Pa. (b) By definition, p = pg + patm = 1.22×107 
Pa. (c) We interpret the question as asking for the 
total force compressing the sphere’s surface, and we 
multiply the pressure by total area:  p(4πr 

2) = 3.82 
×105 N. (d) The (upward) buoyant force exerted on 
the sphere by the seawater is Fb = ρwgV, where V = 
(4/3)πr 

3. Therefore, Fb = 5.26 N. (e) Newton’s second 
law applied to the sphere (of mass m = 7.00 kg) 
yields Fb − mg = ma, which results in a = –9.04 
m/s2, which means the acceleration vector has a 
magnitude of 9.04 m/s2. (f) The direction is down- 
ward. 
92.• (a) We assume that the top surface of the slab is 
at the surface of the water and that the automobile 
is at the center of the ice surface. Let M be the mass 
of the automobile, ρi be the density of ice, and ρw 
be the density of water. Suppose the ice slab has 

area A and thickness h. Since the volume of ice is 
Ah, the downward force of gravity on the auto- 
mobile and ice is (M+ρiAh)g. The buoyant force of 
the water is ρwAhg, so the condition of equilibrium 
is (M+ρiAh)g − ρwAhg = 0 and 

A =
h

M

iw )( ρρ −
=

)30.0)(917998(
1100
−

= 45 (m2). 

These density values are found in Table 14-1 of the text.  
(b) It does matter where the car is placed since the 
ice tilts if the automobile is not at the center of its 
surface. 
91.• Equilibrium of forces (on the floating body) is 
expressed as  Fb = mbody g  ⇒  ρliquid g Vsubmerged = 
ρbody g Vtotal , which leads to 

liquid

body

total

submerged

ρ

ρ
=

V
V

. 

We are told (indirectly) that two-thirds of the body is 
below the surface, so the fraction above is 2/3. Thus, 
with ρbody = 0.98 g/cm3, we find ρliquid ≈ 1.5 g/cm3 — 
certainly much more dense than normal seawater 
(the Dead Sea is about seven times saltier than the ocean 
due to the high evaporation rate and low rainfall in that 
region). 
59.* (a) The continuity Eq. yields Av = aV, and 
Bernoulli’s Eq. yields Δp + (½)ρv 

2 = (½)ρV 
2, where 

Δp = p1 – p2. The first Eq. gives V = (A/a)v. We use 
this to substitute for V in the second Eq., and obtain 
Δp + (½)ρv 

2 = (½)ρ(A/a)2V 
2. We solve for v. The 

result is  

v =
]1)/[(

2
22 −

Δ

aA
p

ρ
=

)1(
2

2

2

−

Δ

A
pa

ρ
. 

(b) We substitute values to obtain  

v =
])1032()1064)[(1000(

)10411055)(1032(2
2424

334

−−

−

×−×

×−×× = 3.06 (m/s). 

Consequently, the flow rate is  Av = (64×10−4 m2) 
(3.06 m/s) = 2.0×10−2 m3/s . 
61.* (a) Bernoulli’s Eq. gives pA = pB +(½)ρairv 

2, But  
Δp = pA − pB. = ρgh in order to balance the pressure 
in the two arms of the U-tube. Thus ρgh = (½)ρairv2, 

or             v = .2

air

gh
ρ
ρ  

(b) The plane’s speed relative to the air is  

v =
03.1

)260.0)(8.9)(810(2 = 63.3 (m/s). 

♦靜流體壓力(v = 0)：壓力 p + 重力位能密度ρgy 
= 常數 ♦連續方程式：體流率 Av =常數 ♦柏努

利方程式：壓力 p + 動能密度(½)ρv2 + 重力位能

密度ρgy = 常數 ♦亞基米得原理：一部份或完全

浸於流體內的物體，被一等於其排開流體重量之

力所浮升，即浮力 FB = ρfVg。 
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重點整理－第 14 章 流體 
什麼造成抓地效應？又為什麼它會消失？ 

密度 任一物質的密度ρ定義為每單位體積的質量： 

ρ = Δm/ΔV.            (14-1) 
通常物質試樣遠大於原子尺度，14-1 式可寫為 

ρ = m/V.             (14-2) 
流體壓力 流體為可流動的物質；其因無法承受切

應力，形狀隨容器形狀而改變；然而它能施加一

垂直於其表面的力，該力可藉壓力 p 以描述： 

p = ΔF/ΔA,             (14-3) 
其中ΔF 為作用於面積ΔA 之表面元素的力。假如

力均勻施於平坦表面上，則 14-3 式可寫為 

        p = F/A.              (14-4) 
於流體中某特定點由流體壓力產生的力，其大小

於各方向均相等。計示壓力為在某點真實的壓力

(或絕對壓力)與大氣壓力之差。 
壓力隨高度及深度變化 在靜止流體內壓力隨鉛

直位置 y 而改變，對 y 向上取正而言， 

p2 = p1 + ρg(y1−y2).       (14-7) 
流體內所有同一高度的點之壓力均相等。假如 h
為流體試樣在壓力為 p0 某參考高度之下的深

度，14-7 式變為 

p = p0 + ρgh,          (14-8) 
式中 p 為試樣內的壓力。 
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帕斯卡原理  施於密閉容器中流體之壓力改變

量，必不滅地傳遞至流體每一部份與容器壁上。 
亞基米德原理 當物體完全或部份浸於流體中，週

遭的流體作用於物體造成一浮力 bF
r
。此力垂直向

上且其大小為      Fb = mfg ,          (12-24) 
式中 mf 為物體所排開流體的質量(亦即被物體排

擠出的流體)。 
當物體浮於流體上，作用於物體的(向上)浮力

大小 Fb等於作用於物體的(向下)重力大小 Fg。浮

力作用的物體之視重與真實重量的關係為 

weightapp = weight − Fb     (14-19) 
理想流體流動  理想流體為不可壓縮且無黏滯

性，並且其流動為穩定的且無旋的。流線為各流

體質點所依循的路徑。流動管為一整束流線。於

任一流動管中流動遵循連續方程式： 
Rv = Av = 常數,        (12-25) 

其中 Rv 為體積流率，A 為流管中任意點的截面

積，而 v 為該點流體速率。質量流率 Rm為 

Rm = ρRv = ρAv = 常數.    (14-25) 
柏努利方程式  應用力學能守恆原理於理想流體

之流動導出沿著任意流動管之柏努利方程式： 
p + 

2
1 ρv2 + ρgy = 常數    (14-29) 
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Archimedes亞基米得; Bernoulli柏努利; Pascal帕斯卡; 
Rayleigh 瑞立; Torricelli 托里切利; fluid 流體; flow 流

動; tube of flow 流動管; laminar flow;層流; equation of 
continuity 連續方程式; mass/volume flow rate 質/體流

率; Mercury barometer 水銀氣壓計; open-tube manome- 
ter 開管壓力計; pressure 壓力; absolute/gauge pressure
絕對/計示壓力; systolic/diastolic pressure 收縮/舒張壓; 
mm Hg 毫米汞柱; dam 水壩; hydraulic lever 液壓槓桿; 
flap 副翼; siphon 虹吸管; wing 尾翼,擾流板; buoyant 
force 浮力; density 密度; desperado 歹徒; dye 染料; 
Ethanol 乙醇; Heimlich maneuver 海姆利胥急救法; 
negative lift 負升力; nonviscous 無黏滯的; pilot tube 領

示管; irrotational 無旋的; scuba 水肺; streamline 流線; 
torpedo 魚雷; turbulent 急,湍流的; venturi meter 文士里

計量計;  
•備忘錄• 

 


