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Chapter 13  Gravitation 
03. The gravitational force between the two parts is 

F = Gm(M−m)/r2 = (G/r2)(mM−m2), 
which we differentiate with respect to m and set 
equal to zero: 

dF/dm = 0 = (G/r2)(M−2m)  ⇒  M = 2m. 
which leads to the result  m/M = 1/2. 
04. Using F = GmM/r 

2, we find that the topmost 
mass pulls upward on the one at the origin with 1.9 
×108 N, and the rightmost mass pulls rightward on 
the one at the origin with 1.0×108 N. Thus, the (x, y) 
components of the net force, which can be convert- 
ed to polar components (here we use magnitude- 
angle notation), are 

netF
r

= (1.04×10−8,1.85×10−8) ⇒ (2.13×10−8∠60.6°). 
(a) The magnitude of the force is 2.13×108 N. (b) 
The direction of the force relative to the +x axis is 60.6°. 
11. If the lead sphere were not hollowed the 
magnitude of the force it exerts on m would be F1 = 
GmM/d 2. Part of this force is due to material that is 
removed. We calculate the force exerted on m by a 
sphere that just fills the cavity, at the position of the 
cavity, and subtract it from the force of the solid 
sphere.  The cavity has a radius r = R/2. The 
material that fills it has the same density (mass to 
volume ratio) as the solid sphere. That is Mc/r 3 = 
M/R 3, where Mc is the mass that fills the cavity. The 
common factor 4π/3 has been canceled. Thus, 

Mc = (r/R) M = (1/2)3 M = (1/8)M . 
The center of the cavity is  d − r = d − R/2 from m, 
so the force it exerts on m is 

F2 = 
2/

)8/(
Rd

mMG
−

. 

With M (m) = 2.95 (0.431) kg and R (d) = 4.00 
(9.00) cm, the force of the hollowed sphere on m is 

F = F1 − F2 = GMm ]
)2/(8

11[ 22 Rdd −
−  

      ]
)2/1(8

11[
22 dRd

GMm
−

−= = 8.31×10−9 (N). 

09. (a) The distance between any of the spheres at 
the corners and the sphere at the center is 

r = l/2cos30° = l/ 3 , 
where l is the length of one side of the equilateral 
triangle. The net (downward) contribution caused 
by the two bottom-most spheres (each of mass m) to 
the total force on m4 has magnitude 

2Fy = 2
2
4

r
mGm sin30° = 3

2
4

l

mGm . 

This must equal the magnitude of the pull from M, so 

3
2
4

l

mGm  = 
2

4

)3/(l
mGm , 

which readily yields m = M.  (b) Since m4 cancels 
in that last step, then the amount of mass in the 
center sphere is not relevant to the problem. The net 
force is still zero. 
15. The acceleration due to gravity is given by ag = 
GM/r 2, where M is the mass of Earth and r is the 
distance from Earth’s center. We substitute r = R+h, 
where R is the radius of Earth and h is the altitude, 
to obtain ag = GM/(R+h)2. We solve for h and 
obtain h = (GM/ag)1/2 − R. With R = 6.37×106 m and 
M = 5.98×1024 kg, so 

h =
9.4

)1098.5)(1067.6( 2411 ×× −
 

  − 6.37×106 = 2.6×106 (m). 
20. (a) What contributes to the GmM/r 2 force on m 
is the (spherically distributed) mass M contained 
within r (where r is measured from the center of M). At 
point A we see that M1+M2 is at a smaller radius 
than r = a and thus contributes to the force: 

|Fon,m| = G 2
21 )(

a
MM + m. 

(b) In the case r = b, only M1 is contained within 
that radius, so the force on m becomes GM1m/b2.  
(c) If the particle is at C, then no other mass is at 
smaller radius and the gravitational force on it is zero. 
26. The gravitational potential energy is 

U = −Gm(M−m)/r = −(G/r)(mM−m2), 
which we differentiate with respect to m and set 
equal to zero (in order to minimize). Thus, we find 
M−2m = 0 which leads to the ratio m/M = 1/2 to 
obtain the least potential energy. Note that a second 
derivative of U with respect to m would lead to a 
positive result regardless of the value of m which 
means its graph is everywhere concave upward and 
thus its extremum is indeed a minimum. 
33. (a) We use the principle of conservation of energy. 
Initially the particle is at the surface of the asteroid 
and has potential energy Ui = GMm/R, where M is 
the mass of the asteroid, R is its radius, and m is the 
mass of the particle being fired upward. The initial 
kinetic energy is (½)mv 

2. The particle just escapes 
if its kinetic energy is zero when it is infinitely far 
from the asteroid. The final potential and kinetic 
energies are both zero. Conservation of energy yields 
GMm/R + (½)mv 2 = 0. We replace GM/R with agR, 
where ag is the acceleration due to gravity at the 
surface. Then, the energy eq. becomes agR + (½)v 2 
= 0. We solve for v: 

v = Rag2 = 310500)(0.3(2 × = 1.7×103 (m/s). 
(b) Initially the particle is at the surface; the poten- 
tial energy is Ui = GMm/R and the kinetic energy is 
Ki = (½)mv 

2. Suppose the particle is a distance h 
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above the surface when it momentarily comes to 
rest. The final potential energy is Uf = GMm/(R+h) 
and the final kinetic energy is Kf = 0. Conservation 
of energy yields 

R
GMm

− +
2
1 mv2 =

hR
GMm
+

− . 

We replace GM with agR 
2 and cancel m in the 

energy eq. to obtain 

−agR +
2
1 v 

2 = −ag hR
R
+

2
. 

The solution for h is 

h = 
22

2

2

2

vRa

Ra

g

g

−
− R =

1000)10500)(0.3(2
)10500)(0.3(2

3

3

−×

×  

              − 500×103 = 2.5×105 (m). 
(c) Initially the particle is a distance h above the 
surface and is at rest. Its potential energy is Ui = 
GMm/(R+h) and its initial kinetic energy is Ki = 0. 
Just before it hits the asteroid its potential energy is 
Uf = GMm/R. Write (½)mvf

 2 for the final kinetic 
energy. Conservation of energy yields 

hR
GMm
+

− =
R

GMm
− +

2
1 mv 

2 . 

We substitute agR 2 for GM and cancel m, obtaining 

−ag hR
R
+

2
= −agR +

2
1 v 

2 . 

The solution for v is 

v =
hR

Ra
Ra g

g +
−

22
2 = 1.4×103 (m/s) 

=
33

3
3

10100010500

)10500)(0.3(2
)10500)(0.3(2

×+×

×
−× . 

37. Let m = 0.020 kg and d = 0.600 m (the original 
edge-length, in terms of which the final edge-length is 
d/3). The total initial gravitational potential energy 
(using Eq. 13-21 and some elementary trigonometry) is 

Ui = d
Gm24

− −
d

Gm
2

2 2
. 

Since U is inversely proportional to r then reducing 
the size by 1/3 means increasing the magnitude of 
the potential energy by a factor of 3, so 

Uf = 3Ui ⇒ U = 2Ui = 2 (4+ 2 )(
d

Gm2
− ) 

               = −4.82 × 10–13 (J). 
43. (a) If r is the radius of the orbit then the magni- 
tude of the gravitational force acting on the satellite 
is given by GMm/r 

2, where M is the mass of Earth 
and m is the mass of the satellite. The magnitude of 
the acceleration of the satellite is given by v 

2/r, 
where v is its speed. Newton’s second law yields 
GMm/r 

2 = mv 
2/r. Since the radius of Earth is 

6.37×106 m the orbit radius is r = 6.37×106 m 
+160×103 m = 6.53×106 m. The solution for v is 

v =
r

GM =
6

2411

1053.6
)1098.5)(1067.6(

×

×× −
 

= 7.82×103 (m/s). 
(b) Since the circumference of the circular orbit is 
2π r, the period is 

T =
v

rπ2 =
m/s1053.6

)m1053.6(2
3

6

×

×π = 5.25×103 s = 87.5 min. 

46. To “hover” above Earth (ME = 5.98×1024 kg) 
means that it has a period of 24 hours (86400 s). By 
Kepler’s law of periods, 

(86400)2 = 
EGM

24π r 3 ⇒ r = 4.225×107 m. 

Its altitude is therefore r − RE (where RE = 6.37×106 
m) which yields 3.58×107 m. 
53. Each star is attracted toward each of the other 
two by a force of magnitude GM 2/L2, along the line 
that joins the stars. The net force on each star has 
magnitude 2(GM 2/L2)cos30° and is directed toward 
the center of the triangle. This is a centripetal force 
and keeps the stars on the same circular orbit if 
their speeds are appropriate.  If R is the radius of 
the orbit, Newton’s second law yields (GM2/L2) 
cos30° = Mv 

2/R. The stars rotate about their center 
of mass (marked by a circled dot 
on the diagram above) at the 
intersection of the perpendicu- 
lar bisectors of the triangle 
sides, and the radius of the orbit 
is the distance from a star to the 
center of mass of the three-star 
system. We take the coordinate 
system to be as shown in the diagram, with its 
origin at the left-most star. The altitude of an 
equilateral triangle is 3 L/2, so the stars are 
located at x = 0, y = 0; x = L, y = 0; and x = L/2, y = 

3 L/2. The x coordinate of the center of mass is xc 
= (L+L/2)/3 = L/2 and the y coordinate is yc = 
( 3 /2)L/3 = L/ 32 . The distance from a star to the 
center of mass is  

R = 22
cc yx + = 222 )12/()4/( LL + = L/ 3 . 

Once the substitution for R is made Newton’s 
second law becomes (2GM 

2/L3)cos30° = 3 Mv 
2/L. 

This can be simplified somewhat by recognizing 
that cos30° = 3 /2, and we divide the eq. by M. 
Then, GM/L2 = v 2/L and v = (GM/L)1/2. 
57. The energy required to raise a satellite of mass 
m to an altitude h (at rest) is given by 

E1 = ΔU = GMEm(
hRR EE +

−
11 ), 

and the energy required to put it in circular orbit 
once it is there is 
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E2 = 2
orb2

1 mv = GMEm
)(2

1
hRE +

. 

Consequently, the energy difference is 

ΔE = E1 − E2 = GMEm[
ER

1 −
)(2

3
hRE +

]. 

(a) Solving the above eq., the height h0 at which ΔE 
= 0 is given by 

ER
1 −

)(2
3

0hRE +
= 0 ⇒ h0 = 2

ER = 3.19×106 (m). 

(b) For greater height h > h0, ΔE > 0 implying E1 > 
E2. Thus, the energy of lifting is greater. 
71. (a) With M = 2.0×1030 kg and r = 104 m, we find 

ag = 2r
GM = 1.3×1012 (m/s2). 

(b) Although a close answer may be obtained by 
using the constant acceleration eqs. of Chapter 2, 
we show the more general approach (using energy 
conservation): 

K0 + U0 = K + U, 
where K0 = 0, K = (½)mv 2 and U given by Eq. 13- 
21. Thus, with ro = 10001 m, we find 

v = )11(2
0rr

GM − = 1.6×106 (m/s). 

76. (a) Since the volume of a sphere is 4πR 3/3, the 
density is 

ρ = Mtotal/(4πR3/3) = (3Mtotal)/(4πR3). 
When we test for gravitational acceleration (caused 
by the sphere, or by parts of it) at radius r 
(measured from the center of the sphere), the mass 
M which is at radius less than r is what contributes 
to the reading (GM/r 2). Since M = ρ(4πr 3/3) for r < 
R then we can write this result as 

G
2

33
total )3/4)(4/3(

r
rRM ππ = G

3
total

R
rM , 

when we are considering points on or inside the 
sphere. Thus, the value ag referred to in the problem 
is the case where r = R: 

ag = 2
total

R
GM , 

and we solve for the case where the acceleration 
equals ag/3: 

2
total

3R
GM =

3
total

R
rGM  ⇒  r =

3
R . 

(b) Now we treat the case of an external test point. 
For points with r > R the acceleration is GMtotal/r2, 
so the requirement that it equal ag/3 leads to 

2
total

3R

GM =
2
total

r

rGM  ⇒  r = 3 R. 

87. (a) Kepler’s law of periods is 

T 2 =
GM

24π r 3. 

With M = 6.0×1030 kg and T = 300(86400) = 2.6× 
107 s, we obtain r = 1.9×1011 m. (b) The orbit is 
circular suggests that its speed is constant, so 

v = 2π r/T = 4.6×104 m/s. 
98. If the angular velocity were any greater, loose 
objects on the surface would not go around with the 
planet but would travel out into space.  (a) The 
magnitude of the gravitational force exerted by the 
planet on an object of mass m at its surface is given 
by F = GmM/R 2, where M is the mass of the planet 
and R is its radius. According to Newton’s second 
law this must equal mv 2/R, where v is the speed of 
the object. Thus, 

GM/R 2 = v2/R . 
Replacing M with (4π/3)ρR 3 (where ρ is the density 
of the planet) and v with 2πR/T (where T is the 
period of revolution), we find 

(4π/3)GρR  = (4π2/T2)R . 
We solve for T and obtain  T = (3π/Gρ)1/2. 
(b) With ρ = 3.0×103 kg/m3, we evaluate the eq. for 
T:         T = [3π/(6.67×10−11)/(3.0×103)]1/2 

= 6.86×103 (s) = 1.9 (h). 
99. Let v and V be the speeds of particles m and M, 
respectively. These are measured in the frame of 
reference described in the problem (where the 
particles are seen as initially at rest). Now, momen- 
tum conservation demands 

mv = MV  ⇒  v + V = v(1+
M
m ), 

where v+V is their relative speed (the instantaneous 
rate at which the gap between them is shrinking). 
Energy conservation applied to the two-particle 
system leads to 

Ki + Ui = K + U, 

d
GmMMVmv

r
GmM

−+=− 22

2
1

2
10 . 

d
GmM

M
mmv

r
GmM

−+=− )1(
2
1 2 . 

If we take the initial separation r to be large enough 
that GmM/r is approximately zero, then this yields a 
solution for the speed of particle m: 

v =
)/1(

2
Mmd

GM
+

. 

Therefore, the relative speed is 

v + V = 
)/1(

2
Mmd

GM
+

)1(
M
m

+ =
d

mMG )(2 + . 

103. The magnitude of the net gravitational force on 
one of the smaller stars (of mass m) is 

)
4

(
)2( 222

mM
r
Gm

r
Gmm

r
GMm

+=+ . 

This supplies the centripetal force needed for the 
motion of the star: 
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,)
4

(
2

2 r
vmmM

r
Gm

=+  where v =
T

r 2π . 

Plugging in for speed v, we arrive at an eq. for 
period T: 

T =
)4/(

 2 2/3

mMG
r
+

π . 

94.* (a) We partition the full range into arcs of 3° 
each: 360°/3° = 120. Thus, the maximum number of 
geosynchronous satellites is 120.  (b) Kepler’s law 
of periods, applied to a satellite around Earth, gives  
T 2 = r 3(4π 2/GMs), where T = 24 h = 86400 s for the 
geosynchronous case. Thus, we obtain r = 4.23×107 
m.  (c) The arc length s is related to angle of arc θ 
(in radians) by  s = rθ. Thus, with θ = 3(π/180) = 
0.052 rad, we find  s = 2.2×106 m.  (d) Points on 
the surface (which, of course, is not in orbit) are 
moving toward the east with a period of 24 h. If the 
satellite is found to be east of its expected position 
(above some point on the surface for which it used 
to stay directly overhead), then its period must now 
be smaller than 24 h.  (e) From Kepler’s law of 
periods, it is evident that smaller T requires smaller 
r. The storm moved the satellite towards Earth. 
(如發現錯誤煩請告知 jyang@mail.ntou.edu.tw, Thanks.) 

第 13 章 重力作用 
位於宇宙中心的怪物為何？ 

人外有人，星外有星；白馬非馬，黑洞非洞 

12F
r

= −G(m1m2/r12
2) 21r̂ = 21F

r
− ; 

重力定律 牛頓在分析行星繞太陽運動時，發現

“重力定律” (1687 年發表) “在宇宙中任意質點間

以一引力相互吸引，而此力與質點質量乘積成正

比，與它們之間的距離之平方成反比”。 

Fg = Gm1m2/r12
2，G = 6.672×10−11 N m2 kg−2  

重力係沿著兩質點之連線方向； 重力形成一

作用力及反作用力對； 重力遵守疊加原理 1F
r

= 

12F
r

+ 13F
r

+ 14F
r

+ …. ； 重力與物體之運動狀態無

關。G 值: 1798，Cavendish 首次實驗測出。 
重力之殼層定理：A.對一均勻球(殼)而言，其與

球(殼)外心質點之動作用儼然整個球(殼)之質量

集中於球(殼)心。B.對一均勻殼而言，其與殼內

質點之重力作用為零。C.對一均勻球而言，其與

球內質點之重力作用與到球心距離成正比。 

<証明>：可視球為半徑為 r 之實心球(a)及剩餘之

外殼(b)組成，而(b)之貢獻為零，因此 

F = GMam/r 
2 = GM(r/R)3m/r 

2 = G(Mm/R 
3) r. 

 

重力位能：重力為保守力 ⇒ 重力位能 

  U( Arv ) − U( Brv ) ≡ − ∫ ⋅
A

B

r

r
rdF

r

r

rr 

 12 = dr
r

mGmA

B

r

r∫
 

 2
21  

   U(rA) − U(rB)= −(Gm1m2/rA)+(Gm1m2/rB),  
U(r) = −Gm1m2/r, setting U(r) = 0 as rB → ∞,  
♦地表附近之重力位能： 

U(R+y) − U(R) =GmME/RE − GmME/(RE+y) 
    ≅ GmMEy/RE

2, U(y) = m(GME/RE
2)y = mgy. 

重力位能 + 動能 = 常數 
E = K + U =

2
1 mv 

2 − GmME/r. 

克普勒行星運動定律：1.第一(軌道)定律：太陽系

之行星，各在以太陽為焦點之一橢圓軌道上運

行。2.第二(面積)定律：由太陽連至行星之線，於

相等時間中掃過相等的面積。3.第三(週期)定律：

行星距太陽之平均距離 R 之立方，與行星繞太陽

周期 T 之平方的比值 R 
3/T 

2，對各個行星皆相等。 

♦衛星繞地球軌道如為圓形 GmM/r 
2 = mv 

2/r, 

  v = rGM / , K =
2
1 mv 

2 = GmM/2r, 

  U = −GmM/r, T 
2 = (4π2/GM)r 

3, r = 軌道半徑. 
♦衛星繞地球軌道如為橢圓形 
  E = −GmM/2a, T 

2 = (4π2/GM)a 
3, a = 半長軸. 

♦衛星高度：3.58×104 km (同步), 891 km (華二) 
♦當人造衛星在大氣層運轉時，遭受空氣阻力，

耗損力學能ΔE < 0，但動能(或速率)仍增加，此

乃軌道半徑減小，而位能減少以致！ 

脫離速度：vesc ≡ RGM /2 , 
 ER = E∞, 

2
1 mvR

2 − GmM/R =
2
1 mv∞2 − GmM/r∞, 

 Set v∞ = 0, r∞ → ∞, vR = RGM /2 ≡ vesc. 
** vesc = 11.2 km/s (Earth), 4.3 km/s (Mercury) 
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F, F’ 為橢圓之焦點，設 F 為太陽之位置 

P(A)為行星之近 (遠 )日點  

直角座標 (x ,  y)，極座標 (r ,  θ)  

x 2/a 2 + y 2/b 2 = 1，a = 半長軸，b = 半短軸 
α/r = 1 − ε cosθ，ε ≡ eccentricity 離心率 
c = OF = εa, c 2 = a 2 − b 2, ε 2 = 1 − b2/a2. 
 
 
 
 
 

 

 
 
 

Table 1 

 星球名稱 神話故事之象徵 衛星數目 軌道半徑 軌道週期 ε 
0 太陽(Sun)   -- -- -- 

1 水星(Mercury) 使者及商業之神(羅)  5.80×1010 88.0d 0.2056 

2 金星(Venus) 司愛及美之女神(羅)  1.08×1011 224.7d 0.0068 

3 地球(Earth)  1 1.49×1011 365.3d 0.0167 

4 火星(Mars) 代表戰神(羅) 2 2.28×1011 687.0d 0.0934 

5 木星(Jupiter) 主神(羅) 61 7.78×1011 11.86y 0.0485 

6 土星(Saturn) 農神(羅) 31 1.43×1012 29.46y 0.0555 

7 天王星(Uranus) 天神(希) 25 2.87×1012 84.02y 0.0463 

8 海王星(Neptune) 海神(羅) 13 4.49×1012 164.8y 0.0090 

9 冥王星(Pluto) 冥府之神(希羅) 1 5.90×1012 247.7y 0.2490 

  地球 5.98×1024 kg / 6.37×106 m，月球 7.36×1022 kg，太陽 1.99×1030 kg 

Table 2  Escape Velocities for the Planets, the Moon, and the Sun 
Plants Mercury Venus Earth Moon Mars Jupiter Saturn Uranus Neptune Pluto Sun 

vesc(km/s) 4.3 10.3 11.2 2.38 5.0 59.5 36 22 24 1.1 618 
 


