Chapter 13

03. The gravitational force between the two parts is
F = Gm(M-m)/r? = (G/r?)(mM-n¥),
which we differentiate with respect to m and set
equal to zero:
dF/dm=0=(G/r})(M-2m) = M=2m

which leads to the result m/M =1/2.
04. Using F = GmM/r?, we find that the topmost
mass pulls upward on the one at the origin with 1.9
%108 N, and the rightmost mass pulls rightward on
the one at the origin with 1.0x10% N. Thus, the (X, y)
components of the net force, which can be convert-
ed to polar components (here we use magnitude-
angle notation), are

F.. = (1.04x10°1.85x10%) = (2.13x1072.£60.6°).

(a) The magnitude of the force is 2.13x10% N. (b)
The direction of the force relative to the +x axis is 60.6°.
11. If the lead sphere were not hollowed the
magnitude of the force it exerts on mwould be F; =
GmM/d?. Part of this force is due to material that is
removed. We calculate the force exerted on mby a
sphere that just fills the cavity, at the position of the
cavity, and subtract it from the force of the solid
sphere. The cavity has a radius r = R/2. The
material that fills it has the same density (mass to
volume ratio) as the solid sphere. That is MJ/r? =
M/R3, where M is the mass that fills the cavity. The
common factor 4713 has been canceled. Thus,

Mc = (r/R)M = (1/2)*M = (1/8)M .
The center of the cavity is d-r =d - R/2 from m,
so the force it exerts on mis

F,= G (M /8)m .

d-R/2
With M (m) = 2.95 (0.431) kg and R (d) = 4.00
(9.00) cm, the force of the hollowed sphere on mis

1 1
F=F,-F,=GMmL-— 1
e [ sa-ri2?

GMm 1
8(1- R/ 2d)?

T ]1=8.31x107° (N).
09. (a) The distance between any of the spheres at
the corners and the sphere at the center is

r = 0/2c0s30° = (/43
where 7 is the length of one side of the equilateral
triangle. The net (downward) contribution caused
by the two bottom-most spheres (each of mass m) to
the total force on my has magnitude

2F, = 2 2Me M singge = 3 SuM.
4

r
This must equal the magnitude of the pull from M, so
3 Gmym _ Gmym

2 (3)?
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which readily yields m= M. (b) Since my cancels
in that last step, then the amount of mass in the
center sphere is not relevant to the problem. The net
force is still zero.
15. The acceleration due to gravity is given by ag =
GM/r2, where M is the mass of Earth and r is the
distance from Earth’s center. We substitute r = R+h,
where R is the radius of Earth and h is the altitude,
to obtain a, = GM/(R+h)’>. We solve for h and
obtain h = (GM/ag)? — R. With R = 6.37x10° m and
M = 5.98x10% kg, so

he \/ (6.67x10711)(5.98x 10%)
4.9
— 6.37x10° = 2.6x10° (m).
20. (a) What contributes to the GmM/r? force on m
is the (spherically distributed) mass M contained
within r (where r is measured from the center of M). At
point A we see that M;+M, is at a smaller radius
than r = a and thus contributes to the force:

Fonm| = G('V'Lz'v'z) m.
a

(b) In the case r = b, only My is contained within
that radius, so the force on m becomes GM;nvVb?.
(c) If the particle is at C, then no other mass is at
smaller radius and the gravitational force on it is zero.
26. The gravitational potential energy is
U = -Gm(M-m)/r = —(G/r)(mM-n7),

which we differentiate with respect to m and set
equal to zero (in order to minimize). Thus, we find
M-2m = 0 which leads to the ratio m/M = 1/2 to
obtain the least potential energy. Note that a second
derivative of U with respect to m would lead to a
positive result regardless of the value of m which
means its graph is everywhere concave upward and
thus its extremum is indeed a minimum.

33. (a) We use the principle of conservation of energy.
Initially the particle is at the surface of the asteroid
and has potential energy U; = GMmMVR, where M is
the mass of the asteroid, R is its radius, and mis the
mass of the particle being fired upward. The initial
kinetic energy is (v2)mv2. The particle just escapes
if its kinetic energy is zero when it is infinitely far
from the asteroid. The final potential and kinetic
energies are both zero. Conservation of energy yields
GMM/R + (%2)mv® = 0. We replace GM/R with agR,
where a4 is the acceleration due to gravity at the
surface. Then, the energy eq. becomes agR + (V2
= 0. We solve for v:

v=.[2a,R=2(3.0)(500x10° = 1.7x10° (m/s).

(b) Initially the particle is at the surface; the poten-
tial energy is U; = GMnVR and the kinetic energy is
Ki = (%2)mv2 Suppose the particle is a distance h
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above the surface when it momentarily comes to
rest. The final potential energy is U = GMnV(R+h)
and the final kinetic energy is K¢ = 0. Conservation
of energy vyields

GMm 1 GMm

"R 2 R+h’
We replace GM with a;R® and cancel m in the
energy eg. to obtain

1 5 R?
—-8R+=Vv = - .
% 2 % R+h
The solution for his
he 2% R 2(3.0)(500 x10°)
2a,R* —v* 2(3.0)(500 x10%) — 1000

—500%10° = 2.5x10° (m).
(c) Initially the particle is a distance h above the
surface and is at rest. Its potential energy is U; =
GMnV(R+h) and its initial kinetic energy is K; = 0.
Just before it hits the asteroid its potential energy is
Us = GMnVR. Write (Y2)mv;? for the final kinetic
energy. Conservation of energy yields

_— =+ V-,
R+h R 2
We substitute agR2 for GM and cancel m, obtaining
R? 1,
- =—aR+=Vv".
% R+h % 2

The solution for v is

2a,R?
V=423, R- 29" =1 4%10°% (mis)
9 R+h

3
:\/2(3.0)(500><103)— 2(3.0)(500x10%)
500x10° +1000x10°

37. Let m=0.020 kg and d = 0.600 m (the original
edge-length, in terms of which the final edge-length is
d/3). The total initial gravitational potential energy
(using Eq. 13-21 and some elementary trigonometry) is

Ui = 4Gme 2Gm?
i—— - .
d J2d

Since U is inversely proportional to r then reducing
the size by 1/3 means increasing the magnitude of
the potential energy by a factor of 3, so

— _ _ GmZ
Ui=30;= U =2U=2 (4+2 )(- &)

=-4.82 x 1072 (J).

43. (a) If r is the radius of the orbit then the magni-
tude of the gravitational force acting on the satellite
is given by GMm/r?, where M is the mass of Earth
and m is the mass of the satellite. The magnitude of
the acceleration of the satellite is given by v/,
where v is its speed. Newton’s second law Yyields
GMm/r? = mv?r. Since the radius of Earth is
6.37x10° m the orbit radius is r = 6.37x10° m
+160x10° m = 6.53x10° m. The solution for v is

BERL SRS s A

- [GM :\/(6.67><10_11)(5.98><1024)
r 6.53x10°

= 7.82x10° (m/s).
(b) Since the circumference of the circular orbit is
2zr, the period is
T =22 2 20(653:10°m) _ g o5 1035 = 7.5 min.

V. 653x10°mis
46. To “hover” above Earth (Mg = 5.98x10% kg)
means that it has a period of 24 hours (86400 s). By
Kepler’s law of periods,

(864002 = 47" 13— 1 =4.225¢10"m.
GM g
Its altitude is therefore r — Re (where Re = 6.37x10°
m) which yields 3.58x10" m.
53. Each star is attracted toward each of the other
two by a force of magnitude GM?/L?, along the line
that joins the stars. The net force on each star has
magnitude 2(GM?/L?)cos30° and is directed toward
the center of the triangle. This is a centripetal force
and keeps the stars on the same circular orbit if
their speeds are appropriate. If R is the radius of
the orbit, Newton’s second law vyields (GM%/L?)
c0s30° = Mv#/R. The stars rotate about their center
of mass (marked by a circled dot
on the diagram above) at the
intersection of the perpendicu-
lar bisectors of the triangle
sides, and the radius of the orbit
is the distance from a star to the
center of mass of the three-star
system. We take the coordinate
system to be as shown in the diagram, with its
origin at the left-most star. The altitude of an
equilateral triangle is 3 L/2, so the stars are
located at x=0,y=0; x=L,y=0;andx=L/2,y =
V3 L/2. The x coordinate of the center of mass is X.
= (L+L/2)/3 = L/2 and the y coordinate is y. =
(v/3/2)L/3 = L/2y3. The distance from a star to the
center of mass is
R=yx¢+y2 =y(L214)+(12/12)? = L/+3.
Once the substitution for R is made Newton’s
second law becomes (2GM?/L%)cos30° =43 MV/L.
This can be simplified somewhat by recognizing
that cos30° =43/2, and we divide the eq. by M.
Then, GM/L? = v%/L and v = (GM/L)*2.
57. The energy required to raise a satellite of mass
mto an altitude h (at rest) is given by
1 1
E1 =AU = GMEm(R—E— Re 1 h ),
and the energy required to put it in circular orbit
once it is there is
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_
2(Rg +h)
Consequently, the energy difference is
1 3
AE=E -E=GMgm[— -———1].
e el Re 2(Rg +h) ]
(a) Solving the above eq., the height hy at which AE
=0 is given by
R
Re  2(Rg +hy)
(b) For greater height h > hy, AE > 0 implying E; >
E,. Thus, the energy of lifting is greater.
71. (a) With M = 2.0x10* kg and r = 10* m, we find

ag —% = 1.3x10% (m/s?).

1
E :E orb = GMem

0= ho _iz 3.19x10° (m).

(b) Although a close answer may be obtained by
using the constant acceleration eqs. of Chapter 2,
we show the more general approach (using energy
conservation):

Ko + Uo =K+ U,
where Ko = 0, K = (¥2)mv? and U given by Eq. 13-
21. Thus, with r, = 10001 m, we find

v=_|2GM (%—ri) = 1.6x10° (m/s).
0

76. (a) Since the volume of a sphere is 47R%/3, the
density is
£ = Mt/ (A41R/3) = (BMiot)/ (4TRY).

When we test for gravitational acceleration (caused
by the sphere, or by parts of it) at radius r
(measured from the center of the sphere), the mass
M which is at radius less than r is what contributes
to the reading (GM/r ?). Since M = p(4xr3/3) for r <
R then we can write this result as

G (3M total /477R3)(47zr3 /3) =G M total !
when we are considering points on or inside the

sphere. Thus, the value a4 referred to in the problem
is the case wherer = R:

ag - GM tzotal ,
R
and we solve for the case where the acceleration
equals ay/3:
GM total — GM total ' = r :B.
3R? R® 3

(b) Now we treat the case of an external test point.
For points with r > R the acceleration is GMgw/r?,
so the requirement that it equal ay/3 leads to

GM ot — CM toral " r =\/§ R
3R? r?
87. (a) Kepler’s law of periods is
T2 —4Lr .
GM

PEREBEIRE B
With M = 6.0x10% kg and T = 300(86400) = 2. 6><
10" s, we obtain r = 1.9x10" m. (b) The orbit is
circular suggests that its speed is constant, so

v=271/T=4.6x10* ms.
98. If the angular velocity were any greater, loose
objects on the surface would not go around with the
planet but would travel out into space. (&) The
magnitude of the gravitational force exerted by the
planet on an object of mass m at its surface is given
by F = GmM/R?, where M is the mass of the planet
and R is its radius. According to Newton’s second
law this must equal mv¥/R, where v is the speed of
the object. Thus,
GM/R* = VIR.
Replacing M with (473)pR? (where p is the density
of the planet) and v with 2zR/T (where T is the
period of revolution), we find
(43)GpR = (47°IT°)R.
We solve for T and obtain T = (32/Gp)*?.
(b) With p = 3.0x10°% kg/m®, we evaluate the eq. for
T: T = [374(6.67x107%)/(3.0x10°%)]"?
= 6.86x10° (s) = 1.9 (h).
99. Let v and V be the speeds of particles mand M,
respectively. These are measured in the frame of
reference described in the problem (where the
particles are seen as initially at rest). Now, momen-
tum conservation demands

m=MV = v+V=v(1+§),

where v+V is their relative speed (the instantaneous
rate at which the gap between them is shrinking).
Energy conservation applied to the two-particle
system leads to

Ki+Ui=K+U,
O_GmMzzlnN@%lez_GmM
r 2 2 d
_GmM :lnw2a+lny—GmM
r 2 M d

If we take the initial separation r to be large enough
that GmM/r is approximately zero, then this yields a
solution for the speed of particle m:

_ 2GM

“\da+m/M)
Therefore, the relative speed is

2GM (1+m) — fZG(M +m) _
d@+m/M) M d

103. The magnitude of the net gravitational force on
one of the smaller stars (of mass m) is
GMm Gmm Gm m
—+ =M +-).
r (2r)>  r? 4
This supplies the centripetal force needed for the
motion of the star:

v+V=
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2 2y

@(M +m)=mv—, wherev="—,
r? 4 r T

Plugging in for speed v, we arrive at an eq. for

period T:

3/2
T= 2y

JGM +m/a)

94.* (a) We partition the full range into arcs of 3°
each: 360°/3° = 120. Thus, the maximum number of
geosynchronous satellites is 120. (b) Kepler’s law
of periods, applied to a satellite around Earth, gives
T2 = r3(47%GMy), where T = 24 h = 86400 s for the
geosynchronous case. Thus, we obtain r = 4.23x10’
m. (c) The arc length s is related to angle of arc &
(in radians) by s=ré. Thus, with 8= 3(#/180) =
0.052 rad, we find s=2.2x10° m. (d) Points on
the surface (which, of course, is not in orbit) are
moving toward the east with a period of 24 h. If the
satellite is found to be east of its expected position
(above some point on the surface for which it used
to stay directly overhead), then its period must now
be smaller than 24 h. (e) From Kepler’s law of
periods, it is evident that smaller T requires smaller
r. The storm moved the satellite towards Earth.
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H=R(Earth)
'+ i (Mars)
# B (Jupiter)
-+ EI(Saturn)
= K (Uranus)
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Table 1
G

1
2
61
31
25
13
1

L
5.80x10%
1.08x10"
1.49%x10"
2.28x10™
7.78x10M
1.43x10"
2.87x10%
4.49x10%
5.90x10%

HERLLKEY Hy PR

S

88.0d
224.7d
365.3d
687.0d
11.86y
29.46y
84.02y
164.8y
247.7y

&
0.2056
0.0068
0.0167
0.0934
0.0485
0.0555
0.0463
0.0090
0.2490

P47k 5.98x10% kg / 6.37x10° m » £ SR 7.36x10% kg > [ 1.99x10% kg
Table 2  Escape Velocities for the Planets, the Moon, and the Sun
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Plants Mercury Venus Earth Moon Mars Jupiter Saturn Uranus Neptune Pluto Sun
Vesc(km/s) 4.3 10.3  11.2 238 5.0 595 36 22 24 1.1 618
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