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Chapter 12  Equilibrium and Elasticity 
05. Three forces act on the sphere: the tension force 
T of the rope (acting along the rope), 
the force of the wall FN (acting 
horizontally away from the wall), and 
the force of gravity mg (acting down- 
ward). Since the sphere is in equili- 
brium they sum to zero. Let θ be the 
angle between the rope and the 
vertical. Then, the vertical compo- 
nent of Newton’s second law is Tcosθ – mg = 0. The 
horizontal component is FN – Tsinθ = 0.  (a) We 
solve the first eq. for the tension: T = mg/cosθ.  We 
substitute cosθ = L/ 22 rL + to obtain 

T = mg
L

rL 22 + = 9.4 (N) 

= (0.85)(9.8)
080.0

042.0080.0 22 + . 

(b) We solve the second eq. for the normal force: FN 
= T sinθ. Using sinθ = r/ 22 rL + , we obtain 
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07. We take the force of the left pedestal to be F1 at 
x = 0, where the x axis is along the diving board. 
We take the force of the right pedestal to be F2 and 
denote its position as x = d. W is the weight of the 
diver, located at x = L.  The following two eqs. 
result from setting the sum of forces equal to zero 
(with upwards positive), and the sum of torques 
(about x2) equal to zero: 

F1 + F2 − W = 0  and  F1d + W (L − d) = 0. 
(a) The second eq. gives 

F1 = )N 580(
m 5.1
m 0.3

−=
−

− W
d

dL = −1160 N, 

which should be rounded off to F1 = −1.2×103 N. 
Thus, |F1| = 1.2×103 N.  (b) Since F1 is negative, 
indicating that this force is downward.  (c) The 
first eq. gives  F2 = W − F1 = 580 N + 1160 N = 
1740 N, which should be rounded off to F2 = 
1.7×103 N. Thus, |F2| = 1.7×103 N. (d) The result is 
positive, indicating that this force is upward.  (e) 
The force of the diving board on the left pedestal is 
upward (opposite to the force of the pedestal on the 
diving board), so this pedestal is being stretched.  
(f) The force of the diving board on the right pedestal 
is downward, so this pedestal is being compressed. 
12. The forces exerted horizontally by the obstruc- 
tion and vertically (upward) by the floor are applied 
at the bottom front corner C of the crate, as it verges 
on tipping. The center of the crate, which is where 

we locate the gravity force of magnitude mg = 500 
N, is a horizontal distance l = 0.375 m from C. The 
applied force of magnitude F = 350 N is a vertical 
distance h from C. Taking torques about C, we obtain 

(500 N) (0.375m) 0.536 m.
350 N

mgh
F

= = =
l  

19. We consider the wheel as it leaves the lower 
floor. The floor no longer exerts a force on the 
wheel, and the only forces acting are the force F 
applied horizontally at the axle, the force of gravity 
mg acting vertically at the center of the wheel, and 
the force of the step corner, shown as the two 
components fh and fv. If the minimum force is 
applied the wheel does not 
accelerate, so both the total force 
and the total torque acting on it 
are zero. We calculate the torque 
around the step corner. The 
second diagram indicates that the 
distance from the line of F to the corner is r – h, 
where r is the radius of the wheel and h is the 
height of the step. The distance from the line of mg 
to the corner is [r 2+(r−h)2]1/2 = (2rh−h2)1/2. Thus, 

F(r−h)−mg 22 hrh − = 0. 
The solution for F is 

F =
hr
hrh

−
− 22 mg = 13.6 N. 

29. We examine the box when it 
is about to tip. Since it will rotate about the lower 
right edge, that is where the normal force of the 
floor is exerted. This force is labeled FN on the 
diagram below. The force of friction is denoted by f, 
the applied force by F, and the force of gravity by 
W. Note that the force of gravi- 
ty is applied at the center of the 
box. When the minimum force 
is applied the box does not 
accelerate, so the sum of the 
horizontal force components 
vanishes: F – f = 0, the sum of 
the vertical force components 
vanishes: FN – W = 0, and the 
sum of the torques vanishes:  
FL – WL/2 = 0.  Here L is the 
length of a side of the box and the origin was 
chosen to be at the lower right edge.  (a) From the 
torque eq., we find  F = W/2 = 890 N/2 = 445 N.  
(b) The coefficient of static friction must be large 
enough that the box does not slip. The box is on the 
verge of slipping if μs = f/FN. According to the eqs. 
of equilibrium FN = W = 890 N and f = F = 445 N, 
so μs = 445 N/890 N = 0.50. (c) The box can be roll- 
ed with a smaller applied force if the force points 
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upward as well as to the right. Let θ be the angle the 
force makes with the horizontal. The torque eq. then 
becomes  FLcosθ + FLsinθ – WL/2 = 0, with the 
solution  F = W/2(cosθ+sinθ).  We want 
cosθ+sinθ to have the largest possible value. This 
occurs if θ = 45º, a result we can prove by setting 
the derivative of cosθ + sinθ equal to zero and 
solving for θ. The minimum force needed is  

890 N 315 N.
4cos 45 4cos 45

WF = = =
° °

 

33. The force diagram shown below depicts the 
situation just before the crate tips, when the normal 
force acts at the front edge.  However, it may also 
be used to calculate the angle for which the crate 
begins to slide. W is the force of gravity on the crate, 
FN is the normal force of the plane on the crate, and 
f is the force of friction. We take 
the x axis to be down the plane 
and the y axis to be in the 
direction of the normal force. We 
assume the acceleration is zero 
but the crate is on the verge of 
sliding.  (a) The x and y components of Newton’s 
second law are 

Wsinθ − f = 0 and FN − Wcosθ = 0. 
respectively. The y eq. gives FN = W cosθ . Since 
the crate is about to slide  

f = μsFN = μsWcosθ , 
where μs is the coefficient of static friction. We 
substitute into the x eq. and find 

Wsinθ − μsWcosθ = 0  ⇒  tanθ = μs. 
This leads to  θ = tan–1μs = tan–10.60 = 31.0º.  In 
developing an expression for the total torque about 
the center of mass when the crate is about to tip, we 
find that the normal force and the force of friction 
act at the front edge. The torque associated with the 
force of friction tends to turn the crate clockwise 
and has magnitude f h, where h is the perpendicular 
distance from the bottom of the crate to the center 
of gravity. The torque associated with the normal 
force tends to turn the crate counterclockwise and 
has magnitude FNl/2, where l is the length of an 
edge. Since the total torque vanishes, f h = FNl/2. 
When the crate is about to tip, the acceleration of 
the center of gravity vanishes, so f = W sinθ and FN 
= W cosθ. Substituting these expressions into the 
torque eq., we obtain 

1 1 1.2 mtan tan 33.7 .
2 2(0.90 m)h

θ − −= = = °
l  

As θ is increased from zero the crate slides before it 
tips.  (b) It starts to slide when θ = 31º.  (c) The 
crate begins to slide when θ = tan–1μs = tan–1 0.70 = 
35.0º and begins to tip when θ = 33.7º. Thus, it tips 

first as the angle is increased.  (d) Tipping begins 
at θ = 33.7° ≈ 34°. 
39. (a) Let FA and FB be the forces exerted by the 
wires on the log and let m be the mass of the log. 
Since the log is in equilibrium FA + FB – mg = 0.  
Information given about the stretching of the wires 
allows us to find a relationship between FA and FB. 
If wire A originally had a length LA and stretches by 
ΔLA, then ΔLA = FALA/AE, where A is the cross- 
sectional area of the wire and E is Young’s modulus 
for steel (200×109 N/m2). Similarly, ΔLB = FBLB/AE. 
If l is the amount by which B was originally longer 
than A then, since they have the same length after 
the log is attached, ΔLA = ΔLB + l. This means 

F L
AE

F L
AE

A A B B= + l.  

We solve for FB: 

F F L
L

AE
LB

A A

B B

= −
l .  

We substitute into FA + FB – mg = 0 and obtain 

F mgL AE
L LA

B

A B

=
+
+

l .  

The cross–sectional area of a wire is  A = π r 2 = 
(1.20×10−3 m)2 = 4.52×10−6 m2 . Both LA and LB 
may be taken to be 2.50 m without loss of signifi- 
cance. Thus 

50.250.2
)100.2)(10200)(1052.4()50.2)(8.9)(103( 396

+
×××+

=
−−

AF

= 866 (N). 
(b) From the condition FA + FB – mg = 0, we obtain 
FB = mg – FB = (103 kg)(9.8 m/s2) – 866 N = 143 N. 

(c) The net torque must also vanish. We place the 
origin on the surface of the log at a point directly 
above the center of mass. The force of gravity does 
not exert a torque about this point. Then, the torque 
eq. becomes FAdA – FBdB = 0, which leads to 

143 N 0.165.
866 N

A B

B A

d F
d F

= = =  

40. (a) Since the brick is now horizontal and the 
cylinders were initially the same length l, then both 
have been compressed an equal amount Δl. Thus, 

Δ Δl

l

l

l
= =

FA
A E

F
A EA A

B

B B
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which leads to 
F
F

A E
A E

A E
A E

A

B

A A

B B

B B

B B

= = =
( )( ) .2 2 4  

When we combine this ratio with the eq. FA + FB = 
W, we find FA/W = 4/5 = 0.80.  (b) This also leads 
to the result FB/W = 1/5 = 0.20 .  (c) Computing 
torques about the center of mass, we find FAdA = 
FBdB which leads to 

dA / dB = FB / FA = 1/4 = 0.25 . 
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43. With the x axis parallel to the incline (positive 
uphill), then 

Σ Fx = 0 ⇒ T cos25º − mg sin45° = 0, 
where reference to Fig. 5-18 in the textbook is help- 
ful.  Therefore,  T = 76 N. 
53. (a) The center of mass of the top brick cannot 
be further (to the right) with respect to the brick 
below it (brick 2) than (½)L; otherwise, its center of 
gravity is past any point of support and it will fall. 
So a1 = (½)L in the maximum case.  (b) With brick 
1 (the top brick) in the maximum situation, then the 
combined center of mass of brick 1 and brick 2 is 
halfway between the middle of brick 2 and its right 
edge. That point (the combined com) must be 
supported, so in the maximum case, it is just above 
the right edge of brick 3. Thus, a2 = (¼)L.  (c) 
Now the total center of mass of bricks 1, 2 and 3 is 
one-third of the way between the middle of brick 3 
and its right edge, as shown by this calculation: 

63
)2/()0(2

cm
L

m
Lmmx −=

−+
= , 

where the origin is at the right edge of brick 3. This 
point is above the right edge of brick 4 in the maxi- 
mum case, so a3 = L/6.  (d) A similar calculation 

84
)2/()0(3'

cm
L

m
Lmmx −=

−+
=  

shows that a4 = L/8. (e) We find h = Σi=1 ai = 25L/24. 
70. The notation and coordinates are as shown in Fig. 
12-6 in the textbook. Here, the ladder's center of mass 
is halfway up the ladder (unlike in the textbook figure).  
Also, we label the x and y forces at the ground fs 
and FN, respectively. Now, balancing forces, we have 

Σ Fx = 0 ⇒ fs = Fw,  Σ Fy = 0 ⇒ FN = mg. 
Since fs = fs, max, we divide the eqs. to obtain 

   ,maxs

N

f
F

= μs = 
Fw
mg. 

Now, from Στz = 0 (with axis at the ground) we 
have  mg(a/2) − Fwh = 0. But from the Pythagorean 
theorem, h = 22 aL − , where L = length of ladder.  
Therefore, 

Fw
mg = 

h
a 2/ =

222 aL

a

−
. 

In this way, we find 

μs =
222 aL

a

−
 ⇒  a =

241

2

s

s L

μ

μ

+
. 

Therefore, a = 3.4 m. 
 

重點整理－第 12 章 平衡與彈性 

浮腫、疼痛與攀岩間關聯為何？ 平衡條件：(1)

合(外)力須為零 netF
r

= 0 及(2)合(外)力矩須為零 netτ
r

= 

0；重力產生的總力矩正如總重力作用於重(質)心上。 

靜力平衡 靜止的剛體稱其處於靜力平衡。對於此

類的物體，作用於其上外力之向量和為零： 

0=netF
r

     (力平衡).  (12-3) 
假如所有力皆位於 xy 平面，上述的向量式等同兩個

分量式   Fnet,x = 0 及 Fnet,y = 0  (力平衡). (12-7,8) 

靜力平衡亦意謂對任意點作用於物體的外力矩之

向量和為零 

0=netτ
r

    (力矩平衡). (12-5) 
假如所有力位於 xy 平面，則所有力矩向量皆與 z

軸平行， 於是 12-5 式等同單一分量式 

τnet,z = 0   (力矩平衡). (12-9) 

重心 重力各別作用於組成物體的各元素上，所有

各別作用的淨效應時可藉想像一等效總重力 gF
r
作

用於重心上而求出；假如物體的所有元素之重力加

速度 gr均相同，則重心位於質心上。 

彈性模數 當物體對於作用於其上之力反應時，三

種彈性模數用以描述物體之彈性行為(形變)。應變

(長度改變的比率)依據下列的一般關係，藉適當的

係數與應力(單位面積所受的力)成線性相關， 

應力 = 模數 × 應變.        (12-22) 

伸張與壓縮 當物體在伸張或壓縮狀況下，12-22 式

寫成 

             
L
LE

A
F Δ
= ,           (12-23) 

其中ΔL/L 為物體的張應變或壓應變，F 為造成此應

變的施力 F
r
大小，A 為 F

r
作用的截面積(垂直 A，如

圖 12-11a)，而 E 為物體的楊氏模數；應力為 F/A。 

切應力與切應變 當物體處於切應力狀況下，12-22

式寫成 

L
xG

A
F Δ
= ,           (12-24) 

其中Δx/L 為物體的切應變，Δx 為沿著施力方向物

體末端的位移（如圖 12-11b），而 G 為物體的切變

模數；應力為 F/A。 

液壓應力 當物體由於週遭流體所施應力而使其處

於液壓壓縮狀況下，12-22 式寫成 

V
VBp Δ

= ,          (12-25) 

其中 p 為流體作用於物體上的壓力(液壓應力)，

ΔV/V (應變)為壓力造成的物體體積改變率之絕對

值，而 B 為物體之體彈性模數。 
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48. (a) Eq. 12-8 leads to  T1 sin40º + T2 sinθ = mg. 
Also, Eq. 12-7 leads to  T1 cos40º − T2 cosθ = 0 . 
Combining these gives the expression  

θθ sin40tancos2 +°
=

mgT . 

To minimize this, we can plot it or set its derivative equal 
to zero. In either case, we find that it is at its minimum at 
θ = 50°.  (b) At θ = 50°, we find T2 = 0.77mg. 
(如發現錯誤煩請告知 jyang@mail.ntou.edu.tw, Thanks.) 
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56。 
(static) equilibrium (靜力)平衡; center of gravity 重心; 
(modulus of) elasticity 彈性(模數); tension 伸張; tensile
伸張的; compression 壓縮; strain 應變; strain gauge 應
變規 ; stress 應力 ; hydraulic 液壓的 ; yield/ultimate 
strength 屈服/極限強度; shearing 受切變; Young’s/ 
shear/bulk modulus 楊式/切變/體模數; beam 橫樑 ; 
bulge浮腫; ladder梯子; lattice晶格; polystyrene聚苯乙

烯; 
•備忘錄• 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

54.* (a) With F = ma = −μkmg the magnitude of the 
deceleration is  

|a| = μkg = (0.40)(9.8 m/s2) = 3.92 m/s2. 
(b) As hinted in the problem statement, we can use 
Eq. 12-9, evaluating the torques about the car’s 
center of mass, and bearing in mind that the friction 
forces are acting horizontally at the bottom of the 
wheels; the total friction force there is fk = μkmg = 
3.92m (with SI units understood – and m is the car’s 
mass), a vertical distance of 0.75 meter below the 
center of mass.  Thus, torque equilibrium leads to 

(3.92m)(0.75) + FN,r (2.4) – FN,f (1.8) = 0 . 
Eq. 12-8 also holds (the acceleration is horizontal, not 
vertical), so we have FN,r + FN,f = mg, which we can 
solve simultaneously with the above torque eq..  
The mass is obtained from the car’s weight: m = 
11000/9.8, and we obtain FN,r = 3929 ≈ 4000 N. 
Since each involves two wheels then we have 
(roughly) 2.0×103 N on each rear wheel.  (c) From 
the above eq., we also have FN,f = 7071 ≈ 7000 N, 
or 3.5×103 N on each front wheel, as the values of 
the individual normal forces.  (d) Eq. 6-2 directly 
yields (approximately) 7.9×102 N of friction on 
each rear wheel, (e) Similarly, Eq. 6-2 yields 
1.4×103 N on each front wheel. 
 


