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Chapter 11  Rolling, Torque, and Angular Momentum

01. The initial speed of the car is v = (80.0)(1000)/
3600 = 22.2 (m/s). The tire radius is R = 0.750/2 =
0.375 (m). (a) The initial speed of the car is the ini-
tial speed of the center of mass of the tire, so Eqg.
11-2 leads to
Wy = Vemol R = 22.2/0.375 = 59.3 (rad/s).
(b) With 6= (30.0)(27) = 188 rad and w = 0, Eq.
10-14 leads to
&=’ +2a0 =
lo] = 59.32/(2x188) = 9.31 (rad/s?).
(c) Eq.11-1 gives R = 70.7m for the distance traveled.
05. Let M be the mass of the car (presumably inclu-
ding the mass of the wheels) and v be its speed. Let
I be the rotational inertia of one wheel and w be the
angular speed of each wheel. The kinetic energy of
rotation is K,,, = 4(%:)Iw?, where the factor 4 appears
because there are four wheels. The total kinetic
energy is given by K = (Y)Mv>+4(¥%)Iw’. The frac-
tion of the total energy that is due to rotation is
41w
Mv? +410? '
For a uniform disk (relative to its center of mass) 1
= (Y)mR* (Table 10-2(c)). Since the wheels roll
without sliding @ = v/R (Eq. 11-2). Thus the numera-
tor of our fraction is 4/w° = 4(%)mR*(v/R)* = 2mv?
and the fraction itself becomes

. K
fraction =—2ot =

2m?  2m 200) 1

M2 +2m?  M+2m 1000 50
=0.020.
The wheel radius cancels from the egs. and is not
needed in the computation.
08. Using the floor as the reference position for
computing potential energy, mechanical energy
conservation leads to <cf. Prob. 8-8 & 21>
Urelease = Ktop + Utop or
mgh =% MV’ +%1a)2 + mg(2R).

Substituting 7 = 2mR?%/5 (Table 10-2(f)) and @ = vem/r
(Eg. 11-2), we obtain
mgh 2% MV +% (% Ymr o + 2mgR

fraction =

= gh Z%vcmz + 2gR .
where we have canceled out mass m in that last step.
(a) To be on the verge of losing contact with the
loop (at the top) means the normal force is vanish-
ingly small. In this case, Newton’s second law along
the vertical direction (+y downward) leads to

2
va

= g=—",

—-r
where we have used Eq. 10-23 for the radial (centri-
petal) acceleration (of the center of mass, which at this
moment is a distance R—r from the center of the loop).

Plugging the result ve,” = g(R—r) into the previous

mg = ma,

expression stemming from energy considerations gives
gh Z%g(R—r) + 2gR,

which leads to /4 = 2.7R-0.7r ~ 2.7R . With R =

14.0 cm, we have 4 = (2.7)(14.0 cm) = 37.8 cm.

(b) The energy considerations shown above (now

with & = 6R) can be applied to point Q (which,

however, is only at a height of R) yielding the condition
g(GR) :%chz +gR,

which gives us ven” = 50gR/7. Recalling previous
remarks about the radial acceleration, Newton’s
second law applied to the horizontal axis at Q leads to

2
Nem e 50gR
T(R—r)

R-r
which (for R >> r) gives N ~ (50/7)mg = (50/7)
(2.80x107* kg)(9.80 m/s?) = 1.96x1072 N.
(c) The direction is toward the center of the loop.
15. (a) The derivation of the acceleration is found
in 811-4; Eq. 11-13 gives
dem = —%
1+ 1y | MRS
where the positive direction is upward. We use Iy,
=950 g-cm?, M =120 g, R, = 0.320 cm and g = 980
cm/s? and obtain
_ 980 2
|acm| = 7= 12.5 ~ 13 (cm/s").
1+ (950)/(120)(0.32)
(b) Taking the coordinate origin at the initial posi-
tion, Eq. 2-15 leads to yem = (¥2)aemt?. Thus, we set
Yem = —120 cm, and find
(= ‘/ 2Vem _ \/ 2120cm) _ 4 385~44s5,

a —12.5cm/s?
(c) As it reaches the end of the string, its center of
mass velocity is given by Eqg. 2-11:
Vem = demt = (=12.5 cm/s2)(4.38 s) = —54.8 cm/s

so its linear speed then is approximately 55 cm/s.
(d) The translational kinetic energy is

%mvcmz =2 (0.120 kg)(0.548 m/s)® = 1.8x1072J.

(e) The angular velocity is given by @ = —ven/Rg &
the rotational kinetic energy is

cm

(0.548)?

RS (3.2x107%)? '
which yields K,,, = 1.4 J.  (f) The angular speed is
@ = [veml/Ro = (0.548 m/s) / (3.2x107° m)
= 1.7x10% rad/s = 27 rev/s.

21. If we write r = xi+yj+zK, then (using Eq. 3-30)
we find rxF is equal to <cf. Prob.11-96>
(VF. — zF,) i + (2F, — xF.) j+ (xF, — yF,) K.
(a) Plugging in, we find 7= [(3.0 m)(6.0 N)—(4.0 m)
(-8.0N)]k = (50kN-m)k. (b) We use Eq.3-27, |rxF|
= rFsing, where ¢ is the angle between r and F.
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Now r = (x?+y%)"? = 5.0 m and F = (F2+F,})" =
10 N. Thus, rF = (5.0m)(10N) = 50 N-m, the
same as the magnitude of the vector product calculated
in part (). This implies sing=1and ¢=90°.

24. We note that the component of v perpendicu-
lar to r has magnitude vsing where ¢ = 30°. A simi-
lar observation appliesto F. () Eq. 11-20 leads to /
= rmv, = (3.0)(2.0)(4.0)sin30° = 12 (kg-m?/s). (b)
Using the right-hand rule for vector products, we
find rxp points out of the page, or along the +z axis,
perpendicular to the plane of the figure. (c) Eg.
10-38 leads to 7 = rFsing = (3.0) (2.0)sin30° = 3.0
(N-m). (d) Using the right-hand rule for vector products,

we find rxF is also out of the page, or along the +z axis,
perpendicular to the plane of the figure.

31. If we write (for the general case) r = xi+yj+zK,
then (using Eg. 3-30) we find rxv is equal to
(v—zv))i+(zve—xv.) j+(xv,—yv,)K. (&) The angular
momentum is given by the vector product £ = mrxv,
where r is the position vector of the particle, v is its
velocity, and m = 3.0 kg is its mass. Substituting
(with SI units understood) x=3,y=8,z=0, v, =5,
v, = =6 and v. = 0 into the above expression, we obtain
7= (3.0)[(3.0)(=6.0) — (8.0 m)(5.0 N)] k
= (~1.7x10% kg-m?/s) k .
(b) The torque is given by Eq. 11-14, 7= rxF. We
write r = xi+yj and F = F.i and obtain
7= @iy ])x(Fi) = F.k.
Since ixi=0and jxi=—k.Thus, we find
7=—(8.0m)(=7.0 N)]k = (56 N-m)k.
(c) According to Newton’s second law 7 = dfldt, so
the rate of change of the angular momentum is 56
kg-m?/s, in the positive z direction.
37. (a) A particle contributes mr? to the rotational
inertia, where 7 is the distance from the origin O to
the particle. The total rotational inertia is
1= m(3d)?* + m(2d)* + md? = 14md*
= 14(2.3x1072 kg)(0.12 m)? = 4.6x10"° kg-m?.
(b) The angular momentum of the middle particle
is given by L,, = I,@, where I, = 4md? is its rota-
tional inertia. Thus
L, = 4md*w = 4(2.3x107? kg)(0.12 m)?(0.85 rad/s)
=1.1x107 kg-m?/s.
(c) The total angular momentum is
Io=14md* o= 14(2.3x1072 kg)(0.12 m)?
(0.85 rad/s) = 3.9x10° kg-m?/s.
42. (a) We apply conservation of angular momentum:
Loy + La, = (I1+1) . The angular speed after cou-
pling is therefore
o= he+ Lo, _ (3.3)(450) +(6.6)(900)
L+, 3.3+6.6
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=750 (rev/min).
(b) In this case, we obtain
o= hon + o, _ (3.3)(450) + (6.6)(—900)
L+1, 3.3+6.6
= —450 (rev/min),
or || = 450 rev/min. (c) The minus sign indicates
that @ is in the direction of the second disk’s initial
angular velocity - clockwise.
51. The axis of rotation is in the middle of the rod,
with » = 0.25 m from either end. By Eg. 11-19, the
initial angular momentum of the system (which is
just that of the bullet, before impact) is rmv sing where
m = 0.003 kg and ¢ = 60°. Relative to the axis, this
is counterclockwise and thus (by the common con-
vention) positive. After the collision, the moment of
inertia of the system is 1 = I,, + mr?, where I, =
ML?/12 by Table 10-2(e), with M = 4.0 kg and L =
0.5m. Angular momentum conservation leads to
rmv sing = (mr* +%ML Yoo .

Thus, with @ = 10 rad/s, we obtain

= (0.003)(0.25)+(4.0?(0.5)2 112 14- 1 3x10° (mis).
(0.25)(0.003) sin 60°
60. We make the unconventional choice of clock-
wise sense as positive, so that the angular velocities
(and angles) in this problem are positive. Mechani-
cal energy conservation applied to the particle (before
impact) leads to
— 2 —

mgh —%mv :v—\/ﬂ,
for its speed right before undergoing the complete-
ly inelastic collision with the rod. The collision is
described by angular momentum conservation: mvd =
(Irog+md®), where I,oq is found using Table 10-2(¢) &
the parallel axis theorem: ([joqtmd 2) = Md?¥12 +
M(d/2)* = Md®/3. Thus, we obtain the angular veloci-
ty of the system immediately after the collision:

— 1 2 2

0= md\/ﬂl(EMd +md®),

which means the system has kinetic energy (¥2)(Zioq
+md?)w?, which will turn into potential energy in
the final position, where the block has reached a
height H (relative to the lowest point) and the center
of mass of the stick has increased its height by H/2.
From trigonometric considerations, we note that H =
d(1—-cosé), so we have

% (Lyoq + md*) @ = mgH + Mg(% VH

2,2
1 md@eh) _, Myoga-coso),
2 (Md® 13)+md 2

from which we obtain
m?hld

0 =cos*[1- ]
(m+M12)(m+M/3)

= cos ' [1- hid 1.
L+ M [ 2m)(L+ M [3m)
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64.° (a) We choose clockwise as the negative rota-
tional sense and rightwards as the positive transla-
tional direction. Thus, since this is the moment
when it begins to roll smoothly, Eq. 11-2 becomes
Vem = —R® = (-0.11 m) . This velocity is positive-
valued (rightward) since @ is negative-valued (clock-
wise) as shown in Fig.11-57. (b) The force of fric-
tion exerted on the ball of mass m is —u, mg (nega-
tive since it points left), and setting this equal to macm
leads to

dom = —14cg = —(0.21)(9.80 m/s?) = 2.1 m/s’,
where the minus sign indicates that the center of
mass acceleration points left, opposite to its velo-
city, so that the ball is decelerating. (c) Measured
about the center of mass, the torque exerted on the
ball due to the frictional force is given by 7= —
mgR. Using Table 10-2(f) for the rotational inertia,
the angular acceleration becomes (using Eq. 10-45)
T —umgR  —-5u,g  —5(0.21)(9.80)
I 2mR?/5 2R 2(0.12)

= —47 (rad/s?),

where the minus sign indicates that the angular
acceleration is clockwise, the same direction as w
(so its angular motion is “speeding up”). (d) The
center-of-mass of the sliding ball decelerates from
Vemo t0 vem during time ¢ according to Eq. 2-11: v,
= vemo—ti gt . During this time, the angular speed
of the ball increases (in magnitude) from zero to |«
according to Eq. 10-12:

@=cos*[1- ] = cos*(0.85) = 32°.

— _ OHgt  Veom
= ==fe - _com
o) =af ¢ = 2250 - Zeo
where we have made use of our part (a) result in
the last equality. We have two egs. involving vem, SO
we eliminate that variable and find
_ __269 _q150.
Tu,g  7(0.21)(9.80)
(e) The skid length of the ball is (using Eq. 2-15)

— 2
AX - V(;mY Ot_%/lkgt

= (8.5)(1.2) — (¥2)(0.21)(9.80)(1.2)* = 8.6 (m).
() The center of mass velocity at the time found in
part (d) is
Vem = Vom. 0 — 1 gt = 8.5 — (0.21)(9.80)(1.2) = 6.1 (m/s).
67.° (a) The diagram below shows the particles and
their lines of motion. The origin is marked O and
may be anywhere. The angular momentum of par-
ticle 1 has magnitude

01 = mvrSinG;, = mv(d+h)
and it is into the page. The angular momentum of
particle 2 has magnitude

Uy = mvr,Siné = mvh

_ 2ch,O _

FEHRELKET PR
and it is out of the page. The ‘

net angular momentum has oy ,
magnitude ! T\ "
L=mv(d+h) —mvh=mvd * O
= (29010 kg)(546 4

m/s)(0.042 m)

= 6.65x10° kg-m?/s,
and is into the page. This result is independent of
the location of the origin. (b) As indicated above,

the expression does not change. (c) Suppose par-
ticle 2 is traveling to the right. Then
L = mv(d+h) + mv h = mv(d+2h).

This result depends on 4, the distance from the ori-
gin to one of the lines of motion. If the origin is
midway between the lines of motion, then iz = —d/2
and L = 0. (d) As we have seen in part (c), the
result depends on the choice of origin.
72.° Conservation of energy (with Eq. 11-5) gives

(Mechanical Energy at max height up the ramp)

= (Mechanical Energy on the floor)

1 2 1 2 - 121 2
Zmvy += Ip@wy +mgh= Zmv° += [jha,
2 MVt dem@ & 2 2

where v, = @,= 0 at the point on the ramp where it
(momentarily) stops. We note that the height %
relates to the distance traveled along the ramp d by
h = dsin(15°). Using item () in Table 10-2 and Eq. 11-2,
we obtain

mgd sin(15°) = mvz(% +3).
After canceling m and plugging in d = 1.5 m, we
find v =2.33 m/s.
77.° The initial angular momentum of the system is
zero. The final angular momentum of the girl-plus-
merry-go-round is (I+MR?)w, which we will take
to be positive. The final angular momentum we
associate with the thrown rock is negative: —mRyv,
where v is the speed (positive, by definition) of the
rock relative to the ground. (a) Angular momentum
conservation leads to

0= (+MRYw-mRv = @=—"R

I+MR?
(b) The girl’s linear speed is given by Eq. 10-18:
Rwo= mR%y .
I +MR?

81.° (a) Interpreting /4 as the height increase for the
center of mass of the body, then (using Eg. 11-5)

mechanical energy conservation leads to  K; = U
1 -, 1 5 1 5, 1 vy, 32

—mv. +—Iw° =mgh, —mv° +—I1(—) =mg(—),
5 M + 3 gh, > ( R) g ( 4g)

from which v cancels and we obtain 7 = (%2)mR>.
(b) From Table 10-2(c), we see that the body could
be a solid cylinder.

Ex.5-2: Prob.11-85.
(4% 46 35 5+ 4 Jyang@mail.ntou.edu.tw, Thanks.)
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Prob. 12-5, 7, 12, 19, 29, 33, 39, 40, 43, 48, 53, 54, 70
(tentatively)
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