BEHRELIRET G B-FRE

Chapter 10 Rotation

01. (a) The second hand of the smoothly running
watch turns through 2z radians during 60 s. Thus, @
= 27/60 = 0.105 (rad/s). (b) The minute hand of the
smoothly running watch turns through 27 radians during
3600s. Thus, @ = 22/3600 = 1.75x10°° (rad/s). (c)
The hour hand of the smoothly running 12-hour
watch turns through 27 radians during 43200 s.
Thus, @= 2743200 = 1.45x10~* (rad/s).
02. The problem asks us to assume v, and o are
constant. For consistency of units, we write ve, =
(85mi/h)(5280ft/mi)/(60min/h) = 7480ft/min. Thus,
with Ax = 60 ft, the time of flight is ¢ = Ax/ve, =
60/7480 = 8.02x10°° (min). During that time, the
angular displacement of a point on the ball’s surface is
0= wt = (1800 rev/min)(8.02x10 2 min) ~ 14 rev.
04. If we make the units explicit, the function is
0= (4.0 rad/s) t — (3.0 rad/s®) ¢ + (1.0 rad/s’) ¢*,

but generally we will proceed as shown in the
problem—Ietting these units be understood. Also, in
our manipulations we will generally not display the
coefficients with their proper number of significant
figures. (a) Eq. 10-6 leads to

w=doldt

= (4.0 rad/s) — (6.0 rad/s®) ¢ + (3.0 rad/s®) ¢2
Evaluating this at # = 2 s yields @, = 4.0 rad/s. (b)
Evaluating the expression in part (a) at # = 4 s gives
wy, = 28 rad/s. (c) Consequently, Eq. 10-7 gives
Oy = (04— ,)/(ta—12) = 12 rad/s®. (d) And Eq. 10-8
gives

a=dwldt =—6.0 rad/s’ + (6.0 rad/s’) ¢ .

Evaluating this at 7 = 2 s produces a = 6.0 rad/s*.
(e) Evaluating the expression in part (d) at ¢t = 4 s
yields o, = 18 rad/s®. We note that our answer for o
does turn out to be the arithmetic average of a, and
ay but point out that this will not always be the case.
10. We assume the sense of initial rotation is positive.
Then, with @y = +120 rad/s and @ = 0 (since it stops
at time £), our angular acceleration (““deceleration’)
will be negative-valued: o = —4.0 rad/s®>. (a) We
apply Eq. 10-12 to obtain . w =an + at = ¢ =
(0-120)/(—4.0) = 30 (s). (b) And Eqg. 10-15 gives

0= ot :% (an +)t

= (120+0)(30)/2 = 1.8x10° (rad).

Alternatively, Eq.10-14 could be used if it is desired
to only use the given information (as opposed to
using the result from part (a)) in obtaining 6. If using
the result of part (a) is acceptable, then any angular
eg. in Table 10-1 (except Eqg. 10-12) can be used to
find 6.

15. The wheel has angular velocity ay = +1.5 rad/s
= +0.239 rev/s® at ¢ = 0, and has constant value of

angular acceleration « < 0, which indicates our
choice for positive sense of rotation. At # its angu-
lar displacement (relative to its orientation at z = 0)
is 8 = +20 rev, and at £, its angular displacement is
6 = +40 rev and its angular velocity is , = 0. (@)
We obtain £, using Eq. 10-15:

& :% (m+amn)t, = t,=2(40)/0.239,
which yields #, = 335 s which we round off to #,
3.4x10%s. (b) Any eq. in Table 10-1 involving « can
be used to find the angular acceleration; we select
Eq. 10-16.

G=>mt—5a 1, = a = —2(40)/335%,
which yields & = —7.12x10™*rev/s? which we convert
to o = —4.5x107 rad/s®. (c) Using 6 = apti+
(¥2) ot (Eq. 10-13) and the quadratic formula, we have

= 1 (@, £ 0} +2a6,)
a

| —0.239+4/0.239% +2(~7.12x107*)(20)

~-7.12x107*
which yields two positive roots: 98 s and 572 s.
Since the question makes sense only if # < #, we
conclude the correct resultis # =98s.
21. (a) We obtain @ = (200 rev/min)(27 rad/rev)/
(60 s/min) = 20.9 rad/s. (b) With »=1.20/2 = 0.60
(m), Eq. 10-18 leadsto v = rew = (0.60)(20.9) = 12.5
(m/s). (c) With ¢ = 1 min, @ = 1000 rev/min and
ap = 200 rev/min, Eq. 10-12 gives a = (w-an)lt =
800 rev/min®. (d) With the same values used in part
(c), Eg. 10-15 becomes 6 = (¥2)(an+w)t = (200+1000)
(1)/2 = 600 (rev).
26. (a) The tangential acceleration, using Eq. 10-22,
i a = ar= (14.2 rad/s?)(2.83 cm) = 40.2 cm/s® .
(b) In rad/s, the angular velocity is @ = (2760)
(24160) = 289 (rad/s), so a, = &’r = (289 rad/s)?
(2.83x102m) = 2.36x10°m/s®. (c) The angular
displacement is, using Eq. 10-14, 0 = ®*2a =
289%/(2x14.2) = 2.94x10°(rad). Then, using Eq. 10-1,
the distance traveled is s = 6 = (0.0283m)(2.94x10°
rad) = 83.2 m.
39. The particles are treated “point-like” in the
sense that Eq. 10-33 yields their rotational inertia,
and the rotational inertia for the rods is figured
using Table 10-2(e) and the parallel-axis theorem
(Eg. 10-36). (a) With subscript 1 standing for the
rod nearest the axis and 4 for the particle farthest
from it, we have

I=h+L+L+1= [%Md%M(% d)’] + md?
+ [ Md*+M(2 d)’] + m(2d)* =2 Md*+ 5md*
=3 (1.2)(0.056)*+ 5(0.85)(0.056)? = 0.023 (kg-m?).
(b) Using Eqg. 10-34, we have
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K:%Ia)2 = (%M+% m)d?w?

=[3(1.2)+3 (0.85)](0.056)(0.30)* = 1.1x1072 (J).
41. We use the parallel-axis theorem. According to
Table 10-2(i), the rotational inertia of a uniform
slab about an axis through the center and perpendi-
cular to the large faces is given by

Im = %M(az +b9).

A parallel axis through the corner is a distance 7 =
[(a/2)*+(b/2)*]"* from the center. Therefore,
1= Iyt MR = %M(a2+b2)+% M(a*+b%)= 2 M(d*+b?)

= (0.172)(0.035%+0.084%) = 4.7x10™* (kg-m?).
47. We take a torque that tends to cause a
counterclockwise rotation from rest to be positive
and a torque tending to cause a clockwise rotation
to be negative. Thus, a positive torque of magnitude
rFising; is associated with F; and a negative tor-
que of magnitude rF,siné is associated with F,.
The net torque is consequently 7 = rFising, —
roF,sin6. Substituting the given values, we obtain

7=(1.30 m)(4.20 N) sin75°

—(2.15m)(4.90 N) sin60° = —3.85 N-m.

51. Combining Eq. 10-45 (7, = Ia) with Eq. 10-38
gives RF, — RF;1 = Ia, Where o = av/t by Eq. 10-12
(with an, = 0). Using item (c) in Table 10-2 and
solving for F5, we find

Fy=MRO (0.02)(0.02(250)
2¢ 2(1.25)
=0.140 (N).

55. (a) We use constant acceleration kinematics. If
down is taken to be positive and «a is the accelera-
tion of the heavier block, then its coordinate is
givenby y = (%)ar? so
a = 2y/t* = 2(0.750 m)/(5.00 s)® = 6.00x107> m/s>.

The lighter block has an acceleration of 6.00x107
m/s? upward. (b) Newton’s second law for the heavier
block is myg — T}, = mya, where my, is its mass and 7;,
is the tension force on the block. Thus,

T, = m(g—a)= (0.500 kg)

(9.8 m/s® — 6.00x1072 m/s?) = 4.87 N.

(c) Newton’s second law for the lighter block is m, g
— T, = m,a, where T, is the tension force on the
block. Thus, T, =m,(g+a)

= (0.460 kg)(9.8 m/s? + 6.00x1072 m/s?) = 4.54 N.
(d) Since the cord does not slip on the pulley, the
tangential acceleration of a point on the rim of the
pulley must be the same as the acceleration of the
blocks, s0 & = a/R = (6.00x107> m/s?)

/(5.00x107% m) = 1.20 rad/s>.

(e) The net torque acting on the pulley is 7= (7},— T,)R.
Equating this to /« we solve for the rotational inertia;
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1= (T,~T))R/a:= (4.87 N — 454 N)
(5.00x1072 m)/(1.20 rad/s?) = 1.38x107 kg-m®.
63. We use ¢ to denote the length of the stick. Since
its center of mass is (¥2)¢ from either end, its initial
potential energy is (Y2)mgt, where m is its mass. Its
initial kinetic energy is zero. Its final potential
energy is zero, and its final kinetic energy is (¥2)/w?,
where [ is its rotational inertia about an axis passing
through one end of the stick and @ is the angular
velocity just before it hits the floor. Conservation of
energy Yields
%mgf =%1a)2 = w=\mgllI .

The free end of the stick is a distance ¢ from the
rotation axis, so its speed as it hits the floor is (from

Eq. 10-18)
v="Lw=+mgl*II .

Using Table 10-2 and the parallel-axis theorem, the
rotational inertial is 7 = (Y4)m/?, so

v =[3gl ={/3(9.80 m/s?)(1.00 m) = 5.42 m/s.

67. From Table 10-2, the rotational inertia of the
spherical shell is (%5)MR?, so the kinetic energy
(after the object has descended distance 4) is

K=1(2 MR 2

sphere pulley

2

+X Iw +Xmy ,
2 2

Since it started from rest, then this energy must be
equal (in the absence of friction) to the potential
energy mgh with which the system started. We
substitute v/r for the pulley’s angular speed and v/R
for that of the sphere and solve for v.

= mgh
(m12)+(12r%)+(MI3)

a 2gh
L+ (I mr?)+(2M 13m)

With M =4.5kg, m =0.60 kg, r=5.0cm, 2 =0.82
m, and 7 = 3.0x10°° kg m?, we have v = 1.4 m/s.

78." We choose positive coordinate directions
(different choices for each item) so that each is accele-
rating positively, which will allow us to set a; = a,
= Ra (for simplicity, we denote this as a). Thus, we
choose upward positive for m;, downward positive
for m, and (somewhat unconventionally) clockwise for
positive sense of disk rotation. Applying Newton’s
second law to my, m, and (in the form of Eg. 10-45) to
M, respectively, we arrive at the following three egs..

Ty — mig = miay, meg — T, = meay, ToR — TAR = .
(a) The rotational inertia of the disk is 7 = (¥2)MR*
(Table 10-2(c)), so we divide the third eq. (above)
by R, add them all, and use the earlier equality
among accelerations — to obtain:

mag —mig = [my+ma+(2)M]a,
which yields a = 4g/25 = 1.57 m/s®. (b) Plugging
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back in to the first eq., we find Ty = 29m,g/25 =
4.55 N, where it is important in this step to have the
mass in Sl units: m; = 0.40 kg. (c) Similarly, with
my = 0.60 kg, we find T, = 5m,g/6 = 4.94 N.
84.° We use conservation of mechanical energy. The
center of mass is at the midpoint of the cross bar of
the H and it drops by (*2)L, where L is the length of
any one of the rods. The gravitational potential
energy decreases by (*2)MgL, where M is the mass
of the body. The initial kinetic energy is zero and
the final kinetic energy may be written (¥2)/w?,
where [ is the rotational inertia of the body and w is
its angular velocity when it is vertical. Thus,
MgL

I
Since the rods are thin the one along the axis of
rotation does not contribute to the rotational inertia.
All points on the other leg are the same distance
from the axis of rotation, so that leg contributes
(MI3)L?, where M/3 is its mass. The cross bar is a
rod that rotates around one end, so its contribution
is (M/3)L?%/3 = ML?/9. The total rotational inertia is
1= (ML?3) + (ML?*/9) = 4ML?/9.
Consequently, the angular velocity is

a)_\/MgL _\/ Mgl _\/g_ 9(9.800 m/s?)
1 AMI? |9 4L 4(0.600 m)
= 6.06 rad/s.
89.° The center of mass is initially at height # =
(%2)Lsin40° when the system is released (where L =
2.0 m). The corresponding potential energy Mgh
(where M = 1.5 kg) becomes rotational kinetic energy
(%) as it passes the horizontal position (where 7
is the rotational inertia about the pin). Using Table
10-2 (e) and the parallel axis theorem, we find
[=%ML2 +M(%L)2 =§ML2.

Mg Lsind0° =2 (%MLZ)a)Z

= @w=,/3gsin40°/ L = 3.1 (rad/s).
125.° The mass of the Earth is M = 5.98x10* kg
and the radius is R = 6.37x10° m. (a) Assuming the
Earth to be a sphere of uniform density, its moment
of inertia is

I =§MR2 =§ (5.98x10%%)(6.37x10°)

=9.71x10*" kg-m*
(b) The angular speed of the Earth is @ = 2#4/T =
27/86400s = 7.27x10°rad/s. Thus, its rotational ki-
netic energy is
Kiot =2 10* =2 (9.71x10)(7.27x10°°)°
= 2.57x10% (J).
(c) The amount of time the rotational energy could be

supplied to at a rate of P = 1.0 kW = 1.0x10° J/s to a
population of approximately N = 5.0x10° people is

0= —%MgL +%1a)2 = -

Therefore,

EEA

AREY G- RE
Ar= Ko _ 2.57x10% ]
NP (5.0x10%)(1.0x10° J/s)
=5.14x10" s ~ 1.6x10° yr.
83." With rightward positive for the block and
clock- wise negative for the wheel (as is conven-
tional), then we note that the tangential acceleration
of the wheel is of opposite sign from the block’s
acceleration (which we simply denote as «); that is, a,
= —a. Applying Newton’s second law to the block
leads to P-T = ma, where m = 2.0 kg. Applying
Newton’s second law (for rotation) to the wheel leads
to —7R = I, where I = 0.050 kg-m®. Noting that Rex
= a; = —a, we multiply this eq. by R and obtain
~TR*=-la = T=allR*
Adding this to the above eq. (for the block) leads to
P = (m+I/R®a . Thus, a = 0.92 m/s? and therefore
a = —4.6 rad/s® (or || = 4.6 rad/s?), where the nega-

tive sign in « should not be mistaken for a deceleration
(it simply indicates the clockwise sense to the motion).
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rigid body k' %% ;translation I #% ;rotation & #-;fixed axis
F_iwh; rotation axis #& f#h; angular position/displacement/
velocity/acceleration & =% /=45 /:# & /4 i & ; radian,
7% & /3 ;variable % #z; parallel-axis theorem T {7 fih T 32 ;
rotational inertia # # 1§ £ ;torque * #&;line of action i*
* &, moment arm 4 &¥; cylinder [l4x;hoop &/ 4p;
sphere 3 ; beverage 4% 4 ;vertigo p% & ;skull £g ¥ ¥ ;vein
= ¢ ; figure skater =34y 7k; roller coaster £ § # & ;
judo Z i¥; hip throw *&4%??;

(4% & -5 34 v jyang@mail.ntou.edu.tw, Thanks.)

Ex.5-1: Prob.10-31.

Prob. 11-1, 5, 8, 15, 21, 24, 31, 37, 42, 51, 60, 64, 67, 72,
77, 81, 85 (tentatively)
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124.° (a) The angular speed @ associated with
Earth’s spin is @ = 24T, where T = 86400 s (one
day). Thus @ = 22/86400 s = 7.3x107° rad/s, and the
angular acceleration « required to accelerate the
Earth from rest to @ in one day is @ = @/T. The
torque needed is then 7=l = Ia/T = (9.7x10%)
(7.3x107°)/86400 = 8.2x10% (N-m), where we used
I = (2/5)MR* for Earth’s rotational inertia. (b)
Using the values from part (a), the kinetic energy of
the Earth associated with its rotation about its own
axis is K = (¥2)lw” = 2.57x10%° J. This is how much
energy would need to be supplied to bring it (start-
ing from rest) to the current angular speed. (c) The
associated power is

P =K/T =2.57x10% J/ 86400 s = 2.0x10°* W.
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