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Chapter 10  Rotation 
01. (a) The second hand of the smoothly running 
watch turns through 2π radians during 60 s. Thus, ω 
= 2π/60 = 0.105 (rad/s). (b) The minute hand of the 
smoothly running watch turns through 2π radians during 
3600 s. Thus, ω = 2π/3600 = 1.75×10−3 (rad/s).  (c) 
The hour hand of the smoothly running 12-hour 
watch turns through 2π radians during 43200 s. 
Thus, ω = 2π/43200 = 1.45×10−4 (rad/s). 
02. The problem asks us to assume vcm and ω are 
constant. For consistency of units, we write vcm = 
(85 mi/h)(5280 ft/mi)/(60 min/h) = 7480 ft/min. Thus, 
with Δx = 60 ft, the time of flight is t = Δx/vcm = 
60/7480 = 8.02×10−3 (min). During that time, the 
angular displacement of a point on the ball’s surface is 
θ = ω t = (1800 rev/min)(8.02×10−3 min) ≈ 14 rev. 
04. If we make the units explicit, the function is 
θ = (4.0 rad/s) t − (3.0 rad/s2) t 2 + (1.0 rad/s3) t 3, 

but generally we will proceed as shown in the 
problem—letting these units be understood. Also, in 
our manipulations we will generally not display the 
coefficients with their proper number of significant 
figures.  (a) Eq. 10-6 leads to  

ω = dθ /dt  
= (4.0 rad/s) − (6.0 rad/s2) t + (3.0 rad/s3) t 2. 

Evaluating this at t = 2 s yields ω2 = 4.0 rad/s.  (b) 
Evaluating the expression in part (a) at t = 4 s gives 
ω4 = 28 rad/s.  (c) Consequently, Eq. 10-7 gives  
αav = (ω4−ω2)/(t4−t2) = 12 rad/s 2. (d) And Eq. 10-8 
gives  

α = dω /dt = −6.0 rad/s2 + (6.0 rad/s3) t . 
Evaluating this at t = 2 s produces α2 = 6.0 rad/s2.  
(e) Evaluating the expression in part (d) at t = 4 s 
yields α4 = 18 rad/s2. We note that our answer for αav 
does turn out to be the arithmetic average of α2 and 
α4 but point out that this will not always be the case. 
10. We assume the sense of initial rotation is positive. 
Then, with ω0 = +120 rad/s and ω = 0 (since it stops 
at time t), our angular acceleration (‘‘deceleration’’) 
will be negative-valued: α = −4.0 rad/s2.  (a) We 
apply Eq. 10-12 to obtain t. ω =ω0 + αt ⇒ t = 
(0−120)/(−4.0) = 30 (s). (b) And Eq. 10-15 gives 

θ = ωavt = 2
1 (ω0 +ω)t 

= (120+0)(30)/2 = 1.8×103 (rad). 
Alternatively, Eq.10-14 could be used if it is desired 
to only use the given information (as opposed to 
using the result from part (a)) in obtaining θ. If using 
the result of part (a) is acceptable, then any angular 
eq. in Table 10-1 (except Eq. 10-12) can be used to 
find θ. 
15. The wheel has angular velocity ω0 = +1.5 rad/s 
= +0.239 rev/s2 at t = 0, and has constant value of 

angular acceleration α < 0, which indicates our 
choice for positive sense of rotation. At t1 its angu- 
lar displacement (relative to its orientation at t = 0) 
is θ1 = +20 rev, and at t2 its angular displacement is 
θ2 = +40 rev and its angular velocity is ω2 = 0 .  (a) 
We obtain t2 using Eq. 10-15: 

θ2 = 2
1 (ω0 +ω2) t2  ⇒  t2 = 2(40)/0.239, 

which yields t2 = 335 s which we round off to t2 ≈ 
3.4×102

 s. (b) Any eq. in Table 10-1 involving α can 
be used to find the angular acceleration; we select 
Eq. 10-16. 

θ2 = 2
1 ω2 t2 − 2

1 α t2
2 ⇒ α = −2(40)/3352, 

which yields α = −7.12×10–4
 rev/s2 which we convert 

to α = −4.5×10–3 rad/s2. (c) Using θ1 = ω0t1+ 
(½)αt1

2 (Eq. 10-13) and the quadratic formula, we have 
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which yields two positive roots: 98 s and 572 s. 
Since the question makes sense only if t1 < t2 we 
conclude the correct result is  t1 = 98 s. 
21. (a) We obtain  ω = (200 rev/min)(2π rad/rev)/ 
(60 s/min) = 20.9 rad/s.  (b) With r = 1.20/2 = 0.60 
(m), Eq. 10-18 leads to  v = rω = (0.60)(20.9) = 12.5 
(m/s).  (c) With t = 1 min, ω = 1000 rev/min and 
ω0 = 200 rev/min, Eq. 10-12 gives  α = (ω−ω0)/t = 
800 rev/min2.  (d) With the same values used in part 
(c), Eq. 10-15 becomes θ = (½)(ω0+ω)t = (200+1000) 
(1)/2 = 600 (rev). 
26. (a) The tangential acceleration, using Eq. 10-22, 
is  at = α r = (14.2 rad/s2)(2.83 cm) = 40.2 cm/s2 .  
(b) In rad/s, the angular velocity is ω = (2760) 
(2π/60) = 289 (rad/s), so  ar = ω 

2
 r = (289 rad/s)2 

(2.83×10–2
 m) = 2.36×103

 m/s2.  (c) The angular 
displacement is, using Eq. 10-14,  θ = ω 

2/2α = 
2892/(2×14.2) = 2.94×103

 (rad). Then, using Eq. 10-1, 
the distance traveled is s = rθ = (0.0283 m)(2.94×103 
rad) = 83.2 m. 
39. The particles are treated “point-like” in the 
sense that Eq. 10-33 yields their rotational inertia, 
and the rotational inertia for the rods is figured 
using Table 10-2(e) and the parallel-axis theorem 
(Eq. 10-36).  (a) With subscript 1 standing for the 
rod nearest the axis and 4 for the particle farthest 
from it, we have 

I = I1 + I2 + I3 + I4 = [
12
1 Md 

2+M(
2
1 d)2] + md 

2 

+ [
12
1 Md 

2+M(
2
3 d)2] + m(2d)2 =

3
8 Md 

2+ 5md 
2 

=
3
8 (1.2)(0.056)2+ 5(0.85)(0.056)2 = 0.023 (kg·m2). 

(b) Using Eq. 10-34, we have 
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K =
2
1 Iω 

2 = (
3
4 M +

2
5 m)d 

2ω 
2  

= [
3
4 (1.2)+

2
5 (0.85)](0.056)2(0.30)2 = 1.1×10−3 (J). 

41. We use the parallel-axis theorem. According to 
Table 10-2(i), the rotational inertia of a uniform 
slab about an axis through the center and perpendi- 
cular to the large faces is given by 

Icm =
12
1 M(a2 + b2). 

A parallel axis through the corner is a distance h = 
[(a/2)2+(b/2)2]1/2 from the center. Therefore, 
I = Icm+Mh2 =

12
1 M(a2+b2)+

4
1 M(a2+b2)=

3
1 M(a2+b2) 

 = (0.172)(0.0352+0.0842) = 4.7×10−4 (kg·m2). 
47. We take a torque that tends to cause a 
counterclockwise rotation from rest to be positive 
and a torque tending to cause a clockwise rotation 
to be negative. Thus, a positive torque of magnitude 
r1F1sinθ1 is associated with F1 and a negative tor- 
que of magnitude r2F2sinθ2 is associated with F2. 
The net torque is consequently τ = r1F1sinθ1 − 
r2F2sinθ2. Substituting the given values, we obtain 

τ = (1.30 m)(4.20 N) sin75° 
− (2.15 m)(4.90 N) sin60° = −3.85 N·m. 

51. Combining Eq. 10-45 (τnet = Iα) with Eq. 10-38 
gives RF2 − RF1 = Iα, where α = ω/t by Eq. 10-12 
(with ω0 = 0). Using item (c) in Table 10-2 and 
solving for F2, we find 

F2 = 1.0 
(1.25) 2

)250(02.0)(02.0( 
 2 1 +=+ F
t

MRω  

    = 0.140 (N). 
55. (a) We use constant acceleration kinematics. If 
down is taken to be positive and a is the accelera- 
tion of the heavier block, then its coordinate is 
given by  y = (½)at 

2, so 
a = 2y/t 2 = 2(0.750 m)/(5.00 s)2 = 6.00×10−2 m/s2. 

The lighter block has an acceleration of 6.00×10–2 
m/s2 upward. (b) Newton’s second law for the heavier 
block is mhg – Th = mha, where mh is its mass and Th 
is the tension force on the block. Thus, 

Th = mh(g−a)= (0.500 kg) 
(9.8 m/s2 − 6.00×10–2 m/s2) = 4.87 N. 

(c) Newton’s second law for the lighter block is ml g 
− Tl = ml a, where Tl is the tension force on the 
block. Thus,  Tl = ml(g+a)  

= (0.460 kg)(9.8 m/s2 + 6.00×10–2 m/s2) = 4.54 N. 
(d) Since the cord does not slip on the pulley, the 
tangential acceleration of a point on the rim of the 
pulley must be the same as the acceleration of the 
blocks, so α = a/R = (6.00×10–2 m/s2) 

/(5.00×10–2 m) = 1.20 rad/s2. 
(e) The net torque acting on the pulley is τ = (Th – Tl)R. 
Equating this to Iα we solve for the rotational inertia: 

I = (Th−Tl)R/α = (4.87 N − 4.54 N) 
(5.00×10–2 m)/(1.20 rad/s2) = 1.38×10–2 kg·m2. 

63. We use l to denote the length of the stick. Since 
its center of mass is (½)l from either end, its initial 
potential energy is (½)mgl, where m is its mass. Its 
initial kinetic energy is zero. Its final potential 
energy is zero, and its final kinetic energy is (½)Iω 2, 
where I is its rotational inertia about an axis passing 
through one end of the stick and ω is the angular 
velocity just before it hits the floor. Conservation of 
energy yields 

2
1 mgl =

2
1 Iω 

2 ⇒ ω = Img /l . 
The free end of the stick is a distance l from the 
rotation axis, so its speed as it hits the floor is (from 
Eq. 10-18) 

v = lω = Img /3l . 
Using Table 10-2 and the parallel-axis theorem, the 
rotational inertial is I = (⅓)ml2, so 

v = lg3 = =)m 00.1)(m/s 80.9(3 2  5.42 m/s. 
67. From Table 10-2, the rotational inertia of the 
spherical shell is (⅔)MR 

2, so the kinetic energy 
(after the object has descended distance h) is 

K =
2
1 (

3
2 MR 

2) 2
sphereω +

2
1 2

pulleyIω +
2
1 mv 

2, 

Since it started from rest, then this energy must be 
equal (in the absence of friction) to the potential 
energy mgh with which the system started. We 
substitute v/r for the pulley’s angular speed and v/R 
for that of the sphere and solve for v. 

v =
)3/()2/()2/( 2 MrIm

mgh
++

 

)3/2()/(1
2

     
2 mMmrI

gh
++

= . 

With M = 4.5 kg, m = 0.60 kg, r = 5.0 cm, h = 0.82 
m, and I = 3.0×10−3 kg m2, we have v = 1.4 m/s. 
78.• We choose positive coordinate directions 
(different choices for each item) so that each is accele- 
rating positively, which will allow us to set a1 = a2 
= Rα (for simplicity, we denote this as a). Thus, we 
choose upward positive for m1, downward positive 
for m2 and (somewhat unconventionally) clockwise for 
positive sense of disk rotation. Applying Newton’s 
second law to m1, m2 and (in the form of Eq. 10-45) to 
M, respectively, we arrive at the following three eqs.. 
T1 − m1g = m1a1, m2g − T2 = m2a2, T2R − T1R = Iα. 

(a) The rotational inertia of the disk is I = (½)MR2 
(Table 10-2(c)), so we divide the third eq. (above) 
by R, add them all, and use the earlier equality 
among accelerations — to obtain: 

m2g − m1g = [m1+m2+(½)M]a, 
which yields a = 4g/25 = 1.57 m/s2. (b) Plugging 
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back in to the first eq., we find T1 = 29m1g/25 = 
4.55 N, where it is important in this step to have the 
mass in SI units: m1 = 0.40 kg. (c) Similarly, with 
m2 = 0.60 kg, we find  T2 = 5m2g/6 = 4.94 N. 
84.• We use conservation of mechanical energy. The 
center of mass is at the midpoint of the cross bar of 
the H and it drops by (½)L, where L is the length of 
any one of the rods. The gravitational potential 
energy decreases by (½)MgL, where M is the mass 
of the body. The initial kinetic energy is zero and 
the final kinetic energy may be written (½)Iω 

2, 
where I is the rotational inertia of the body and ω is 
its angular velocity when it is vertical. Thus, 

0 = −
2
1 MgL +

2
1 Iω 

2 ⇒ 
I

MgL
=ω . 

Since the rods are thin the one along the axis of 
rotation does not contribute to the rotational inertia. 
All points on the other leg are the same distance 
from the axis of rotation, so that leg contributes 
(M/3)L2, where M/3 is its mass. The cross bar is a 
rod that rotates around one end, so its contribution 
is (M/3)L2/3 = ML2/9. The total rotational inertia is   
I = (ML2/3) + (ML2/9) = 4ML2/9.   
Consequently, the angular velocity is 

)m 600.0(4
)m/s 800.9(9

4
9

9/4
 

2

2
====

L
g

ML
MgL

I
MgL

ω  

= 6.06 rad/s. 
89.• The center of mass is initially at height h = 
(½)Lsin40° when the system is released (where L = 
2.0 m). The corresponding potential energy Mgh 
(where M = 1.5 kg) becomes rotational kinetic energy 
(½)Iω 

2 as it passes the horizontal position (where I 
is the rotational inertia about the pin). Using Table 
10-2 (e) and the parallel axis theorem, we find  

I =
2
1 ML 

2 + M(
2
1 L)2 =

3
1 ML 

2. 

Therefore,  Mg
2
1 Lsin40° =

2
1 (

3
1 ML2)ω 

2 

⇒ ω = =° Lg /40sin3 3.1 (rad/s). 
125.• The mass of the Earth is M = 5.98×1024 kg 
and the radius is R = 6.37×106 m. (a) Assuming the 
Earth to be a sphere of uniform density, its moment 
of inertia is 

I =
5
2 MR 

2 =
5
2 (5.98×1024)(6.37×106) 

= 9.71×1037 kg·m2. 
(b) The angular speed of the Earth is  ω = 2π/T = 
2π/86400 s = 7.27×10−5

 rad/s. Thus, its rotational ki- 
netic energy is 

Krot = 2
1 Iω 

2 =
2
1 (9.71×1037)(7.27×10−5)2 

= 2.57×1029 (J). 
(c) The amount of time the rotational energy could be 
supplied to at a rate of P = 1.0 kW = 1.0×103 J/s to a 
population of approximately N = 5.0×109 people is 

Δt =
NP

K rot

)J/s 100.1)(100.5(
J 1057.2

39

29

××

×
=  

= 5.14×1016 s ~ 1.6×109 yr. 
83.• With rightward positive for the block and 
clock- wise negative for the wheel (as is conven- 
tional), then we note that the tangential acceleration 
of the wheel is of opposite sign from the block’s 
acceleration (which we simply denote as a); that is, at 
= −a. Applying Newton’s second law to the block 
leads to P−T = ma, where m = 2.0 kg. Applying 
Newton’s second law (for rotation) to the wheel leads 
to −TR = Iα, where I = 0.050 kg·m2. Noting that Rα 
= at = −a, we multiply this eq. by R and obtain 

−TR 
2 = −Ia  ⇒  T = aI/R 

2. 
Adding this to the above eq. (for the block) leads to  
P = (m+I/R 

2)a .  Thus, a = 0.92 m/s2 and therefore 
α = −4.6 rad/s2 (or |α| = 4.6 rad/s2), where the nega- 
tive sign in α should not be mistaken for a deceleration 
(it simply indicates the clockwise sense to the motion). 

重點整理－第 10 章 轉動 

什麼原因造成雲霄飛車頭痛症？ 

角位置 為了描述剛體繞定軸(稱為轉軸)轉動，可假

定一固定於剛體內參考線，其垂直轉軸並與剛體一

起轉動。量測此線相對於固定方向的角位置θ，當θ
以弧度計量時， 

θ = s / r   (弧度計量), (10-1) 
式中 s 為一半徑 r 及角度θ的圓弧長。弧度計量使轉

數和度數之關係為 
1 rev = 360° = 2π rad.     (10-2) 

角位移 物體繞轉軸轉動，角位置由θ1改變至θ2時，

歷經一段角位移 
Δθ =θ2 −θ1,           (10-4) 

式中對逆時鐘轉Δθ為正，而對順時鐘轉為負。 
角速度與角速率 若物體於時距Δt 內轉動角位移

Δθ，其平均角速度ωav為 
ωav = Δθ / Δt .           (10-5) 

物體(瞬時)角速度ω為 
ω = dθ / dt .            (10-6) 

ωav 和ω兩者皆為向量，其方向由圖 10-6 的右手定

則給定。對逆時鐘轉動其為正而順時鐘轉動為負。

物體的角速度大小則為角速率。 
角加速度 若物體的角速度於時距Δt = t2 − t1內從ω1

變化至ω2，物體的平均角加速度αav為 

tttav Δ
Δ

=
−
−

=
ωωω

α
12

12 .        (10-7) 

物體(瞬時)角加速度α為 
α = dω / dt ,             (10-8) 
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αav和α兩者皆為都是向量。 
等角加速度的運動學方程式 等角加速度(α = 常數)
為轉動運動中重要的特例，適當的運動學方程式於

表 10-1 給定，其為                (10-12/13/16) 
ω −ω0 = α t, θ −θ0 = ω0t + 2

1 α t 
2 = ωt −

2
1 α t 

2, 

ω2 −ω0
2 = 2α (θ −θ0), θ −θ0 = 2

1 (ω +ω0)t, (10-14/15) 

線變數與角變數之關係 剛性轉體內至轉軸垂直距

離 r 的點，於半徑為 r 之圓周上運動。若物體轉動θ
角度，該點沿著圓弧運動的距離 s 為 

s = θ  r   (弧度計量),  (10-17) 
式中θ以徑度為單位。此點的線速度 vr與圓正切，其

線速率為 
v = ω r   (弧度計量),  (10-18) 

式中ω為物體的角速度(單位為每秒之弧度 rad/s)。
該點的線加速度 ar有切向與徑向分量，切向分量為 

        at = α r  (弧度計量),  (10-22) 
式中α為物體的角加速度大小(單位為每秒平方之

弧度 rad/s2)，而徑向分量為 
ar = v 2/r = ω 2r  (弧度計量). (10-23) 

若該點作等速率圓周運動，對於點及物體其運動

周期 T 為 
T = 2π r/v = 2π /ω  (弧度計量). (10-19,20) 

轉動動能與轉動慣量 繞定軸轉動的剛體之動能為 
Krot = 2

1 Iω 2    (弧度計量), (10-34) 

其中 I 為物體的轉動慣量，對於不連續質點組成的

系統其定義為 

∑= 2
ii rmI ,          (10-33) 

而對於連續質量分佈的物體則其定義為 
dmrI ∫= 2 ,           (10-35) 

其中 r 和 ri在這些式中代表物體中各質量元至轉軸

的垂直距離。 
平行軸定理 物體繞著任意軸轉動之轉動慣量 I 與

其繞著通過質心的平行軸轉動之轉動慣量 Icm 之關

係為平行軸定理： 
I = Icm + M h2         (10-36) 

式中 h為兩軸的垂直距離。 
力矩 力矩為由力 F

r
造成物體繞著轉軸旋轉或扭曲

之作用。若力 F
r
施於相對於軸的位置向量 r

r
的點，

則力矩大小為 
τ = r Ft = r⊥ F = r F sinφ ,  (10-40,41,39) 

式中 Ft為 F
r
垂直 r

r
的分量，而φ 為 r

r
與 F

r
的夾角；

r⊥為轉軸與通過 F
r
向量的延伸線之垂直距離，此線

稱為 F
r
的作用線，而 r⊥稱為 F

r
的力臂；同理，r 為

Ft的力臂。力矩的單位(SI 制)為 N·m。若力矩傾向

於逆時鐘方向轉動靜止的物體為正，而順時鐘方向

者為負。 
角式之牛頓第二定律 牛頓第二定律的轉動類比為 

               τnet = Iα ,            (10-45) 
其中τnet為作用於質點或剛體上的淨力矩，I 為質點

或物體對轉軸的轉動慣量，而α為對該轉軸產生的

角加速度。 
功與轉動動能 用以計算轉動運動中的功與功率的

方程式對應於用於平移運動的方程式，其為 

∫=
f

i

dW
θ

θ
θτ

 

 
,          (10-53) 

及              P = dW/dt = τω.        (10-55) 
當τ 為定值時，10-53 式簡化成 

W = τ (θf −θi).        (10-55) 
用於轉動體之功−動能定理形式為 

ΔK = Kf − Ki = 2
1 Iωf

2 −
2
1 Iωi

2 = W.  (10-52) 

•備忘錄• 
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rigid body 剛體;translation 平移;rotation 轉動;fixed axis
定軸; rotation axis 轉軸; angular position/displacement/ 
velocity/acceleration 角位置/位移/速度/加速度; radian,
弧度/徑;variable變數; parallel-axis theorem平行軸定理; 
rotational inertia 轉動慣量;torque 力矩;line of action 作

用線; moment arm 力臂; cylinder 圓柱;hoop 環/戒指; 
sphere 球; beverage 飲料;vertigo 眩暈;skull 頭蓋骨;vein
血管; figure skater 花式溜冰; roller coaster 雲霄飛車; 
judo 柔道; hip throw 腰摔??;  
(如發現錯誤煩請告知 jyang@mail.ntou.edu.tw, Thanks.) 
Ex.5-1: Prob.10-31.  
 
Prob. 11-1, 5, 8, 15, 21, 24, 31, 37, 42, 51, 60, 64, 67, 72, 
77, 81, 85 (tentatively) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

124.• (a) The angular speed ω associated with 
Earth’s spin is ω = 2π/T, where T = 86400 s (one 
day). Thus ω = 2π/86400 s = 7.3×10−5 rad/s, and the 
angular acceleration α required to accelerate the 
Earth from rest to ω in one day is α = ω/T. The 
torque needed is then  τ = Iα = Iω/T = (9.7×1037) 
(7.3×10−5)/86400 = 8.2×1028 (N·m), where we used  
I = (2/5)MR 

2 for Earth’s rotational inertia.  (b) 
Using the values from part (a), the kinetic energy of 
the Earth associated with its rotation about its own 
axis is K = (½)Iω 

2 = 2.57×1029 J. This is how much 
energy would need to be supplied to bring it (start- 
ing from rest) to the current angular speed. (c) The 
associated power is   

P = K/T = 2.57×1029 J/ 86400 s = 2.0×1024 W. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 




