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Chapter 9  Center of Mass and Linear Momentum 
01. Our notation is as follows: x1 = 0 and y1 = 0 are 
the coordinates of the m1 = 3.0 kg particle; x2 = 2.0 
m and y2 = 1.0 m are the coordinates of the m2 = 4.0 
kg particle; and, x3 = 1.0 m and y3 = 2.0 m are the 
coordinates of the m3 = 8.0 kg particle.  (a) With 
M = m1+m2+m3 = 15.0 kg, the x coordinate of the 
center of mass is xcm = (m1x1+m2x2+m3x3)/M = [0+ 
(4.0 kg)(2.0 m)+(8.0 kg)(1.0 m)]/15.0 kg = 1.1 m.  
(b) The y coordinate of the center of mass is  ycm = 
(m1y1+m2y2+m3y3)/M = [0+(4.0 kg)(1.0 m)+ (8.0 kg) 
(2.0 m)]/15.0 kg = 1.3 m.  (c) As the mass of m3, 
the topmost particle, is increased, the center of mass 
shifts toward that particle. As we approach the limit 
where m3 is infinitely more massive than the others, 
the center of mass becomes infinitesimally close to 
the position of m3. 
03. We will refer to the arrangement as a “table.” 
We locate the coordinate origin at the left end of the 
tabletop (as shown in Fig. 9-37). With +x rightward 
and +y upward, then the center of mass of the right 
leg is at (x, y) = (+L, −L/2), the center of mass of the 
left leg is at (x, y) = (0, −L/2), and the center of 
mass of the tabletop is at (x, y) = (L/2, 0).  (a) With 
Mt = M+M+3M = 5M, the x coordinate of the 
(whole table) center of mass is xcm = [ML + M(0) + 
3M(L/2)]/Mt = 0.5L. With L = 22 cm, we have xcm = 
11 cm.  (b) The y coordinate of the (whole table) 
center of mass is  ycm = [M(−L/2) + M(−L/2) + 
3M(0)]/Mt = −L/5, or ycm = −4.4 cm.  From the co- 
ordinates, we see that the whole table center of 
mass is a small distance 4.4 cm directly below the 
middle of the tabletop. 
05. (a) By symmetry the center of mass is located 
on the axis of symmetry of the molecule – the y axis. 
Therefore xcm = 0.  (b) To find ycm, we note that 
3mH ycm = mN(yN−ycm), where yN is the distance from 
the nitrogen atom to the plane containing the three 
hydrogen atoms: 

yN = 211211 )104.9()1014.10( −− ×−×  
= 3.803×10−11 (m). 

Thus,  ycm = 
HN

NN
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ym

+
=

)00797.1(3)0067.14(
)10803.3)(0067.14( 11

+
× −

 

               = 3.13×10−11 (m). 
where Appendix F has been used to find the masses. 
15. We need to find the coordinates of the point 
where the shell explodes and the velocity of the 
fragment that does not fall straight down. The coor- 
dinate origin is at the firing point, the +x axis is 
rightward, and the +y direction is upward. The y 
component of the velocity is given by v = v0y − gt 
and this is zero at time t = v0y/g = (v0/g)sinθ0, where 
v0 is the initial speed and θ0 is the firing angle. The 

coordinates of the highest point on the trajectory are 

x = voxt = vot cosθ =
g

v
2

2
0 sin2θ0 = )8.9(2

202
sin120° 

  = 17.7 (m). 

and  y = v0yt − 2
1 gt2 =

g
v
2

2
0 sin2θ0 = )8.9(2

202
sin260° 

 = 15.3 (m). 
Since no horizontal forces act, the horizontal com- 
ponent of the momentum is conserved. Since one 
fragment has a velocity of zero after the explosion, 
the momentum of the other equals the momentum 
of the shell before the explosion. At the highest 
point the velocity of the shell is v0cosθ0, in the 
positive x direction. Let M be the mass of the shell 
and let V0 be the velocity of the fragment. Then 
Mv0cosθ0 = MV0/2, since the mass of the fragment 
is M/2. This means 

V0 = 2 v0 cosθ0 = 2 (20 m/s) cos60° = 20 m/s. 
This information is used in the form of initial condi- 
tions for a projectile motion problem to determine 
where the fragment lands. Resetting our clock, we 
now analyze a projectile launched horizontally at 
time t = 0 with a speed of 20 m/s from a location 
having coordinates x0 = 17.7 m, y0 = 15.3 m. Its y 
coordinate is given by y = y0 − (½)gt 2 and when it 
lands this is zero. The time of landing is t = 
(2y0/g)1/2 and the x coordinate of the landing point is 

x = xo + Vot = xo + Vo gy /2 0  
= 17.7 + (20) 8.9/)3.15(2 = 53 (m). 

17. There is no net horizontal force on the dog-boat 
system, so their center of mass does not move. 
Therefore by Eq. 9-16,  MΔxcm = 0 = mbΔxb+mdΔxd,  
which implies |Δxb| = (md/mb)|Δxd|. Now we express 
the geometrical condition that relative to the boat 
the dog has moved a distance d = 2.4 m:  |Δxb| + 
|Δxd| = d, which accounts for the fact that the dog 
moves one way and the boat moves the other. We 
substitute for |Δxb| from above: 

b

d

m
m |Δxd| + |Δxd| = d, 

which leads to |Δxd| = d/(1+md/mb) = 2.4/(1+4.5/18) 
= 1.92 (m). The dog is therefore 1.9 m closer to the 
shore than initially (where it was D = 6.1 m from it). 
Thus, it is now D − |Δxd| = 4.2 m from the shore. 
20. (a) Since the force of impact on the ball is in the 
y direction, px is conserved:  

px i = mvi sinθ = px f = mvf sinθ2 . 
With θ = 30.0° and vi = vf , we find θ2 = 30.0°.  (b) 
The momentum change is  

)ĵ(cos)ĵ(cos 12 +−−=Δ θθ if mvmvp
r  
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    )ĵ(30cos)m/s 00.2)(kg 165.0( 2 °−=  
)ĵ)(m/skg 572.0( ⋅−= . 

26. We choose +y upward, which means vi = −25 
m/s and vf = +10 m/s. During the collision, we make 
the reasonable approximation that the net force on 
the ball is equal to Fav – the average force exerted 
by the floor up on the ball.  (a) Using the impulse 
momentum theorem (Eq. 9-31) we find 

)ĵ)(25)(2.1()ĵ)(10)(2.1( −−=−= if vmvmJ
rrr

 

    = 42 (kg·m/s) ĵ . 
(b) From Eq. 9-35, we obtain 

avF
r

= J
r

/Δt = 42 ĵ /0.020 = 2.1×103(N) ĵ . 
29. We use coordinates with +x rightward and +y 
upward, with the usual conventions for measuring 
the angles (so that the initial angle becomes 180°+ 35° 
= 215°). Using SI units and magnitude-angle nota- 
tion (efficient to work with when using a vector-capable 
calculator), the change in momentum is 

if pppJ
rrrr

−=Δ=  = (3.00 kg·m/s∠90°) 
− (3.60 kg·m/s∠215°) = 5.86 kg·m/s∠59.8°. 

(a) The magnitude of the impulse is  J = Δp = 5.86 
kg·m/s. (b) The direction of J is 59.8° measured 
counterclockwise from the +x axis.  (c) Eq. 9-35 
leads to 

J = Fav Δt = 5.86 ⇒ Fav = 5.86/(2.00×10−3) 
                 ≈ 2.93×103 (N). 

We note that this force is very much larger than the 
weight of the ball, which justifies our (implicit) 
assumption that gravity played no significant role in 
the collision. (d) The direction of Fav is the same as 
J, 59.8° measured counterclockwise from the +x axis. 
33. From Fig. 9-55, +y corresponds to the direction 
of the rebound (directly away from the wall) and +x 
towards the right. Using unit-vector notation, the 
ball’s initial and final velocities are 

ĵ 0.3î 2.5ĵ sinî cos −=−= θθ vvvi
r   

and   ĵ 0.3î 2.5ĵ sinî cos +=+= θθ vvv f
r , 

respectively (with SI units understood). (a) With m = 
0.30 kg, the impulse-momentum theorem (Eq. 9-31) 
yields 

)ĵ( )m/s 0.3)(kg 30.0( 2=−= if vmvmJ
rrr

 = 1.8 N.s ĵ . 
(b) Using Eq. 9-35, the force on the ball by the wall 
is J/Δt = (1.8/0.010)j = (180 N)j. By Newton’s third 
law, the force on the wall by the ball is (−180 N)j 
(that is, its magnitude is 180 N and its direction is 
directly into the wall, or “down” in the view pro- 
vided by Fig. 9-55). 
44. This problem involves both mechanical energy 
conservation Ui = Usp = K1 + K2, where Ui = 60 J, 
and momentum conservation 0 = m1v1+m2v2, where 

m2 = 2m1. From the second eq., we find |v1| = 2|v2|, 
which in turn implies (since v1 = |v1| and likewise 
for v2) <cf. Prob.77> 

K1 = 2
1 m1v1

2 = (½)(½m2)(2v2)2 = 2K2 . 

(a) We substitute K1 = 2K2 into the energy conser- 
vation relation and find 

Ui = 2K2 + K2  ⇒  K2 = Ui/3 = 20 J. 
(b) And we obtain  K1 = 2K2 = 2(20) = 40 (J). 
46. We refer to the discussion in the textbook (see S. 
P. 9-8, which uses the same notation that we use 
here) for many of the important details in the 
reasoning. Here we only present the primary com- 
putational step (using SI units): 

)12.0)(80.9( 2
010.0

0.2010.02 +
=

+
= gh

m
Mmv  

     = 3.1×102 (m/s). 
50. We think of this as having two parts: the first is 
the collision itself – where the bullet passes through 
the block so quickly that the block has not had time 
to move through any distance yet – and then the 
subsequent “leap” of the block into the air (up to 
height h measured from its initial position). The first 
part involves momentum conservation (with +y up- 
ward): 

(0.01 kg)(1000 m/s) = (5.0 kg) v 
+ (0.01 kg)(400 m/s), 

which yields  v = 1.2 m/s. The second part involves 
either the free-fall eqs. from Ch. 2 (since we are 
ignoring air friction) or simple energy conservation 
from Ch.8. Choosing the latter approach, we have  
(½)(5.0 kg)(1.2 m/s)2 = (5.0 kg) (9.80 m/s2)h, which 
gives the result  h = 0.073 m. 
53. As hinted in the Pb. statement, the velocity v of 
the system as a whole – when the spring reaches the 
maximum compression xm – satisfies  

m1v1i + m2v2i = (m1 + m2) v. 
The change in kinetic energy of the system is therefore 

ΔK =
2
1 (m1+m2)v 

2−
2
1 m1v1i

2 −
2
1 m2v2i

2 

      2
22

2
11

21

2
2211

2
1

2
1

)(2
)(

ii
ii vmvm

mm
vmvm

−−
+

+
= , 

which yields  K = −35 J. (Although it is not nece- 
ssary to do so, still it is worth noting that algebraic 
manipulation of the above expression leads to ΔK = 
(½)(m1m2)vrel

2/(m1+m2), where vrel = v1–v2). Conser- 
vation of energy then requires 

2
1 kxm

2 = −ΔK ⇒ xm =
k

KΔ− 2 =
1120

)35(2 −−  

       = 0.25 (m). 
56. (a) Let mA be the mass of the block on the left, 
vAi be its initial velocity, and vAf be its final velocity. 
Let mB be the mass of the block on the right, vBi be 
its initial velocity, and vBf be its final velocity. The 
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momentum of the two-block system is conserved, so  
mAvAi + mBvBi = mAvAf + mBvBf 

and  vAf =
A

fBBiBBiAA

m
vmvmvm    −+

 

     
6.1

)9.4)(4.2()5.2)(4.2()5.5)(6.1( −+
= = 1.9 (m/s). 

(b) The block continues going to the right after the 
collision.  (c) To see if the collision is elastic, we 
compare the total kinetic energy before the collision 
with the total kinetic energy after the collision. The 
total kinetic energy before is 

Ki = 2
1 mAvAi

2 +
2
1 mBvBi

2 =
2
1 (1.6)(5.5)2  

+
2
1 (2.4)(2.5)2 = 31.7 (J). 

The total kinetic energy after is 
Kf = 2

1 mAvAf
2 +

2
1 mBvBf

2 =
2
1 (1.6)(1.9)2  

+
2
1 (2.4)(4.9)2 = 31.7 (J). 

Since Ki = Kf the collision is found to be elastic. 
60. First, we find the speed v of the ball of mass m1 
right before the collision (just as it reaches its low- 
est point of swing). Mechanical energy conserva- 
tion (with h = 0.700 m) leads to 

m1gh =
2
1 m1v 

2  ⇒  v = =gh2 3.7 m/s. 

(a) We now treat the elastic collision (with SI units) 
using Eq. 9-67: 

v1f =
21

21

mm
mm

+
− v =

5.25.0
5.25.0

+
− (3.7) = −2.47 (m/s), 

which means the final speed of the ball is 2.47 m/s .  
(b) Finally, we use Eq. 9-68 to find the final speed 
of the block: 

v2f =
21

12
mm

m
+

v =
5.25.0

)5.0(2
+

(3.7) = 1.23 (m/s). 

69. Suppose the objects enter the collision along 
lines that make the angles θ > 0 and φ > 0 with the x 
axis, as shown in the diagram that follows. Both 
have the same mass m and the same initial speed v. 
We suppose that after the collision the combined 
object moves in the positive x direction with speed 
V. Since the y component of the total momentum of 
the two-object system is conserved,  

mv sin θ – mv sin φ = 0. 
This means θ = φ. Since the x com- 
ponent is conserved, 2mv cosθ = 
2mV. We now use V = v/2 to find 
that cosθ = 1/2. This means θ = 60°. 
The angle between the initial velo- 
cities is 120°. 
71. (a) The thrust of the rocket is given by T = R vrel 
where R is the rate of fuel consumption and vrel is 
the speed of the exhaust gas relative to the rocket. 
For this problem R = 480 kg/s and vrel = 3.27×103 
m/s, so T = (480 kg/s)(3.27×103 m/s) = 1.57×106 N.  

(b) The mass of fuel ejected is given by Mfuel = RΔt 
where Δt is the time interval of the burn. Thus, Mfuel 
= (480 kg/s)(250 s) = 1.20×105 kg. The mass of the 
rocket after the burn is   Mf = Mi − Mfuel = (2.55× 
105 kg) − (1.20×105 kg) = 1.35×105 kg.  (c) Since 
the initial speed is zero, the final speed is given by 

vf = vrel ln
f

i
M
M = (3.27×103)ln

5

5

1035.1
1055.2

×

×  

    = 2.08×103 (m/s). 
109.• (a) Let v be the final velocity of the ball-gun 
system. Since the total momentum of the system is 
conserved mvi = (m+M) v. Therefore,  

v = mvi/(m+M) = (60 g)(22 m/s)/(60 g+240 g) 
= 4.4 m/s. 

(b) The initial kinetic energy is Ki = (½)mvi
2 and the 

final kinetic energy is Kf = (½)(m+M)v 
2 = (½)m2vi

2/ 
(m+M). The problem indicates ΔEth = 0, so the di- 
fference Ki−Kf must equal the energy Us stored in 
the spring: 

Us = )1(
2
1)(

2
1

2
1 2

2
2

mm
mmv

Mm
mv

mv i
i

i +
−=

+
−  

=
2
1 2

imv
mm

M
+

. 

Consequently, the fraction of the initial kinetic energy 
that becomes stored in the spring is 

24060
240
+

=
+

=
Mm

M
K
U

i

s = 0.80 . 

131.• The mass of each ball is m, and the initial 
speed of one of the balls is v1i = 2.2 m/s. We apply 
the conservation of linear momentum to the x and y 
axes, respectively. 

m v1i = mv1f cosθ1 + mv2f cosθ2  
and      0 = mv1f sinθ1 − mv2f sinθ2 . 
The mass m cancels out of these eqs., and we are 
left with two unknowns and two eqs., which is su- 
fficient to solve.  (a) The y-momentum eq. can be 
rewritten as, using θ2 = 60° and v2f = 1.1 m/s, 

mv1f sinθ1 = (1.1 m/s) sin60° = 0.95 m/s, 
and the x-momentum eq. yields  

mv1f cosθ1 = (2.2 m/s) − (1.1 m/s) cos60° 
= 1.65 m/s. 

Dividing these two eqs., we find tanθ1 = 0.576 
which yields θ1 = 30°. We plug the value into either 
eq. and find v1f = 1.9 m/s.  (b) From the above, we 
have θ1 = 30°. (c) One can check to see if this an 
elastic collision by computing  

m
Ki2 = 2

1iv  and 
m
K f2

= 2
1iv + 2

2 fv  

and seeing if they are equal (they are), but one must 
be careful not to use rounded-off values. Thus, it is 
useful to note that the answer in part (a) can be 
expressed “exactly” as v1f = v1i(3)1/2/2 (and of course 
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v2f = v1i/2 “exactly” — which makes it clear that these 
two kinetic energy expressions are indeed equal). 
133.• (a) We locate the coordinate origin at the 
center of Earth.  Then the distance rcm of the center 
of mass of the Earth-Moon system is given by  rcm 
= mM rM/(mM+mE), where mM is the mass of the 
Moon, mE is the mass of Earth, and rM is their 
separation. These values are given in Appendix C. 
The numerical result is   

rcm = 
2422

22

1098.51036.7
1036.7

×+×

× (3.82×108) 

= 4.64×106 = 4.6×103 (km). 
(b) The radius of Earth is RE = 6.37×106 m, so 
rcm/RE = 0.73 = 73%. 
135.• (a) The thrust is R vrel where vrel = 1200 m/s. 
For this to equal the weight Mg where M = 6100 kg, 
we must have R = (6100) (9.8)/1200 ≈ 50 kg/s.  (b) 
Using Eq. 9-42 with the additional effect due to 
gravity, we have       R vrel − Mg = Ma , 
so that requiring a = 21 m/s2 leads to  R = (6100) 
(9.8+21)/1200 = 1.6×102 (kg/s). 

(如發現錯誤煩請告知 jyang@mail.ntou.edu.tw, Thanks.) 
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實心體; variable-mass 變質量 

重點整理─第 9 章 質心與線動量 

假如這事實是真的，那是如何成真？ 

質心 ｎ個質點的系統之質心定義為一點，其座

標為下式給定 

=cmx ∑ =
− n

i ii xmM
1

1 , =cmy ∑=
− n

i ii ymM
1

1 , 

=cmz ∑=
− n

i ii zmM
1

1 ,                 (9-5) 

或      rr  = ∑=
− n

i irmM
1

1 r ,             (9-8) 

式中Ｍ為系統總質量。 
質點的系統之牛頓第二定律 任意質點系統的質

心運動受牛頓第二定律支配，其為 

netF
r

= cmaM r ,          (9-14) 

netF
r

為所有作用於系統外力之淨力，M 為系統總

質量，而 cmar 為系統質心之加速度。 

線動量與牛頓第二定律 對於單一質點，線動量

pr 定義如下      pr  = vmr .         (9-22) 

利用線動量可將牛頓第二定律寫為 

netF
r

 = 
dt
pd
r

.         (9-23) 

對於質點系統，這些關係式變為 

P
r

= cmvM r 及 netF
r

= 
dt
Pd
r

.  (9-25,9-27) 

碰撞與衝量 運用動量型式之牛頓第二定律於涉

及碰撞之似質點物體導得衝量－線動量定理： 

 if pp rr
−  = prΔ  = J

r
, (9-31, 9-32) 

式中 if pp rr
− = prΔ 為物體之線動量改變量， J

r
為

其他物體施於此物體之力 )(tF
r

所造成的衝量 

          J
r

 = dttFf

i

t

t∫
 

 
)(

r
.      (9-30) 

假如於碰撞過程，作用力 )(tF
r

的平均大小為 Fav，

而Δt 為碰撞持續時間，那麼對於一維運動 

J = FavΔt.           (9-35) 
當一穩定的物體流(各物體皆具質量 m 和速率 v)
與固定的物體碰撞，對此固定體之平均作用力為 

=avF
t

n
Δ

− =Δp
t

n
Δ

− vmΔ ,   (9-37) 

式中 n/Δt 為物體與固定體撞擊的時變率， vΔ 為

各撞擊物體的速度改變量，其平均作用力可寫成 

v
t
mFav Δ
Δ
Δ

−= ,           (9-40) 

其中Δm/Δt 為撞擊固定體的質量時變率，於 9-37
及 9-40 式中，若物體撞擊後即停止，則物體速度

變化量Δv = −v；若其以不變的速率直接往後反

彈，則Δv = −2v。 
線動量守恆 假如系統為孤立的，其所受外力總

和為零，則系統的線動量 P 維持不變 

 P
r

 = 常數 (封閉且孤立系統). (9-42) 
上式亦可寫成 

fi PP
rr

= ,             (9-43) 

式中下標 i 及 f 提及某一起始時間及稍後時間之

動量值，(9-42)及(9-43)式為線動量守恆定律之等

同敘述。 
一維非彈性碰撞 於兩物體一維非彈性碰撞中，

這二體系統的動能不守恆。若系統為封閉且孤立

的，則系統線動量必守恆，寫成向量型式為 

ffii pppp 2121
rrrr

+=+ ,   (9-50) 

式中 i、f 提及恰碰撞前和恰碰撞後的的線動量

值。假如物體運動係沿著某單一軸，碰撞為一維

的，即可利用速度沿該軸分量將 9-50 式寫成 

m1v1i + m2v2i = m1v1f + m2v2f.   (9-51) 
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若物體碰撞後黏合一起，這種碰撞為完全非彈性

碰撞，兩物體就擁有相同的末速度 v (因其黏在一起)。 
質心運動 封閉且孤立的兩碰撞物體系統之質心

不受碰撞影響，特別地質心速度亦不受碰撞改變。 
一維彈性碰撞 彈性碰撞為一特殊碰撞型態，其

中碰撞體系統之動能守恆。若系統為封閉且孤立

的，其線動量亦守恆。對於一維碰撞，其中物體

2 為定靶而物體 1 為入射的投射體，由動能與線

動量守恆得到碰撞後的速度表示式 

if v
mm
mmv 1

21

21
1 +

−
= ,          (9-67) 

及          i
i

f v
mm

m
v 1

21
2

2
+

= .         (9-68) 

然而對於物體 2 為動靶的碰撞，則 

iif v
mm

mv
mm
mmv 2

21

2
1

21

21
1

2
+

+
+
−

=      (9-75) 

及   iif v
mm
mmv

mm
mv 1

21

12
1

21

1
2

2
+
−

+
+

= ,     (9-76) 

•質心：均質細棍/長方形板−幾何中心；均質三角形−
三中線交點；均質實心(中空)圓錐−對稱軸上離錐頂

3/4 (2/3)高度處。Q.兩等長臂之 V 字形的質心？ 
•火箭介紹請參考 http://www.ncku.edu.tw/~iaalab/ 
sepeo/Knowledge/vehicle/rocket/rocket.htm 

二維彈性碰撞 假如兩物體相互碰撞且其運動並

未沿著單一軸(碰撞並非正面的)，此碰撞為二維

的；若兩物體系統為封閉且孤立的，動量守恆定

律適用於此碰撞，並可寫為 
ffii pppp 2121

rrrr
+=+ ,    (9-77) 

以分量型式表示，守恆定律給出兩個描述碰撞之

式(各對應二維度之一維) 

p1i,x + p2i,x = p1f,x + p2f,x and p1i,y + p2i,y = p1f,y + p2f,y. 
假如碰撞亦為彈性的，由動能守恆得到第三個方程式 

K1i + K2i = K1f + K2f .    (9-78) 
變質量系統 火箭在無外力作用下，其瞬時加速

度由下式給定 
R vrel = M a, (第一火箭式) (9-87) 

其中 M 為火箭的瞬時質量(包含未耗盡的燃料)，

R (= −dM/dt)為燃料的消耗速率與 vrel為燃料相對

於火箭的噴出速率；R vrel項為火箭引擎的推力。

對固定 R 與 vrel 的火箭，當其質量從 Mi 變化至

Mf，其速度如下所示從 vi變化至 vf 

vf − vi = vrelln
f

i

M
M  (第二火箭式). (9-88) 

(積分公式∫ dx/x = ln x) 
Prob. 10-1, 2, 4, 10, 15, 21, 26, 31, 39, 41, 47, 51, 55, 63, 
67, 78, 83, 84, 124, 125 (tentatively) 

 
 
130.• The diagram below shows the situation as the incident ball (the left-most ball) makes contact with the other
two. It exerts an impulse of the same magnitude on each ball, along the line that joins the centers of the incident
ball and the target ball. The target balls leave the collision along those lines, while the incident ball leaves the
collision along the x axis. The three dotted lines that join the centers of the balls in contact form an equilateral
triangle, so both of the angles marked θ are 30°. Let v0 be the velocity of the incident ball before the collision and
V be its velocity afterward. The two target balls leave the collision with the same speed. Let v represent that speed.
Each ball has mass m. Since the x component of the total momentum of the three-ball system is conserved,  

mv0 = mV + 2mv cosθ , 
and since the total kinetic energy is conserved,  

(½)mv0
2 = (½)mV 2 + 2(½)mv 2 . 

We know the directions in which the target balls leave the collision so we first eliminate V  
and solve for v. The momentum eq. gives V = v0 − 2vcosθ , so 

V 2 = v0
2 − 4 v0vcosθ + 4v 2cos2θ , 

and the energy eq. becomes v0
2 = v0

2 − 4v0vcosθ + 4 v 2 cos2θ +2v 2. Therefore,  

v =
θ

θ
2cos21

cos2
+

v0 =
°+

°

30cos21
30cos2
2

(10) = 6.93 (m/s). 

(a) The discussion and computation above determines the final speed of ball 2 (as labeled in Fig. 9-83) to be 6.9
m/s.  (b) The direction of ball 2 is at 30° counterclockwise from the +x axis.  (c) Similarly, the final speed of ball
3 is 6.9 m/s.  (d) The direction of ball 3 is at −30° counterclockwise from the +x axis.  (e) Now we use the
momentum eq. to find the final velocity of ball 1:  

V = v0 − 2vcosθ = 10 m/s − 2(6.93 m/s)cos30° = −2.0 m/s. 
So the speed of ball 1 is |V| = 2.0 m/s. (f) The minus sign indicates that it bounces back in the −x direction. The 
angle is −180°. (參考題) 




