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Chapter 9 Center of Mass and Linear Momentum

01. Our notation is as follows: x; =0 and y; = 0 are
the coordinates of the m; = 3.0 kg particle; x, = 2.0
m and y, = 1.0 m are the coordinates of the m, = 4.0
kg particle; and, x3 = 1.0 m and y; = 2.0 m are the
coordinates of the m3; = 8.0 kg particle. (a) With
M = mi+my+mz = 15.0 kg, the x coordinate of the
center of Mass is xem = (myxi+moxo+maxs)/M = [0+
(4.0 kg)(2.0 m)+(8.0 kg)(1.0 m)}/15.0 kg = 1.1 m.
(b) The y coordinate of the center of mass is  yem =
(myyr1+may+mays)IM = [0+(4.0 kg)(1.0 m)+ (8.0 kg)
(2.0 m)}/15.0 kg = 1.3 m.  (c) As the mass of ms,
the topmost particle, is increased, the center of mass
shifts toward that particle. As we approach the limit
where mj is infinitely more massive than the others,
the center of mass becomes infinitesimally close to
the position of ms.

03. We will refer to the arrangement as a “table.”
We locate the coordinate origin at the left end of the
tabletop (as shown in Fig. 9-37). With +x rightward
and +y upward, then the center of mass of the right
leg is at (x, y) = (+L, —L/2), the center of mass of the
left leg is at (x, y) = (0, —L/2), and the center of
mass of the tabletop is at (x, y) = (L/2, 0). (a) With
M, = M+M+3M = 5M, the x coordinate of the
(whole table) center of mass is x.m = [ML + M(0) +
3M(LI2)]/M; = 0.5L. With L = 22 cm, we have x.y =
11 cm. (b) The y coordinate of the (whole table)
center of mass is yem = [M(-L/2) + M(-L/2) +
3M(0))/M, = -LI5, of yy = —4.4 cm.  From the co-
ordinates, we see that the whole table center of
mass is a small distance 4.4 cm directly below the
middle of the tabletop.

05. (a) By symmetry the center of mass is located

on the axis of symmetry of the molecule — the y axis.

Therefore x;m, = 0. (b) To find y.m, we note that
3muy Yem = mn(n—Vem), Where yy is the distance from
the nitrogen atom to the plane containing the three
hydrogen atoms:

yn=4(10.14x101)? —(9.4x1071)?

= 3.803x10 ™ (m).

myyy _ (14.0067)(3.803x1071)
my +3my  (14.0067) + 3(1.00797)

=3.13x107 (m).

where Appendix F has been used to find the masses.
15. We need to find the coordinates of the point
where the shell explodes and the velocity of the
fragment that does not fall straight down. The coor-
dinate origin is at the firing point, the +x axis is
rightward, and the +y direction is upward. The y
component of the velocity is given by v = vy, — gt
and this is zero at time ¢ = vo/g = (vo/g)sin&, where
vo IS the initial speed and & is the firing angle. The

Thus, yem=

coordinates of the highest point on the trajectory are

V2o 202
X = Vout = Vot €050 =-25in26) = sin120°
2g 2(9.8)
= 17.7 ().
2
and y= t—— t=—| = sin®60°
YVl 8 T, = 2(9 8)
=15.3 (m).

Since no horizontal forces act, the horizontal com-
ponent of the momentum is conserved. Since one
fragment has a velocity of zero after the explosion,
the momentum of the other equals the momentum
of the shell before the explosion. At the highest
point the velocity of the shell is vy,cosé, in the
positive x direction. Let M be the mass of the shell
and let 7, be the velocity of the fragment. Then
Mvocoséy = MV,/2, since the mass of the fragment
is M/2. This means
Vo =2 vgC0séh = 2 (20 m/s) cos60° = 20 m/s.

This information is used in the form of initial condi-
tions for a projectile motion problem to determine
where the fragment lands. Resetting our clock, we
now analyze a projectile launched horizontally at
time ¢ = 0 with a speed of 20 m/s from a location
having coordinates xo = 17.7 m, yo = 15.3 m. Its y
coordinate is given by y = y, — (¥2)gz? and when it
lands this is zero. The time of landing is ¢ =
(2y0/2)? and the x coordinate of the landing point is

X=Xo+ Vot =x0+ VooJ2yq! g
=17.7 + (20) \/2(15.3) /9.8 = 53 (m).

17. There is no net horizontal force on the dog-boat
system, so their center of mass does not move.
Therefore by Eq. 9-16, MAxcm = 0 = mpAx,+maAxy,
which implies |Ax,| = (ma/m;)|Ax,|. Now we express
the geometrical condition that relative to the boat
the dog has moved a distance d = 2.4 m: |Ax,| +
|Ax,| = d, which accounts for the fact that the dog
moves one way and the boat moves the other. We
substitute for |Ax,| from above:
2 A |+ Ax] = d
myp

which leads to |Ax,| = dI(1+m/m) = 2.4/(1+4.5/18)
= 1.92 (m). The dog is therefore 1.9 m closer to the
shore than initially (where it was D = 6.1 m from it).
Thus, it is now D — |Ax,| = 4.2 m from the shore.
20. (a) Since the force of impact on the ball is in the
y direction, p, is conserved:

Dxi =mv; SING, = py = mv,Sing .
With 6, =30.0° and v; = v/, we find & = 30.0°. (b)
The momentum change is

Ap=mv, cosd, (—]) —mv; C0S 6, (+])
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= ~2/(0.165 kg)(2.00 m/s) cos 30°(j)
=(~0.572kg-m/s)(j).
26. We choose +y upward, which means v; = —25
m/s and v, = +10 m/s. During the collision, we make
the reasonable approximation that the net force on
the ball is equal to F,, — the average force exerted
by the floor up on the ball. (a) Using the impulse
momentum theorem (Eq. 9-31) we find

J =mi; —mi; = 1.2)10)() - 2. 2)(-25)(})

= 42 (kg-m/s) j.
(b) From Eqg. 9-35, we obtain
F,,=J At =427/0.020 = 2.1x10°(N) j.

29. We use coordinates with +x rightward and +y
upward, with the usual conventions for measuring
the angles (so that the initial angle becomes 180°+ 35°
= 215°). Using Sl units and magnitude-angle nota-
tion (efficient to work with when using a vector-capable
calculator), the change in momentum is

J=Mp=p, - p; =(3.00 kg-m/s£90°)

— (3.60 kg:m/s£215°) = 5.86 kg-m/s£59.8°.
(a) The magnitude of the impulse is J= Ap =5.86
kg-m/s. (b) The direction of J is 59.8° measured
counterclockwise from the +x axis. (¢) Eqg. 9-35
leads to

J=F, At=586 = F,, = 5.86/(2.00x107°)
~ 2.93x10% (N).

We note that this force is very much larger than the
weight of the ball, which justifies our (implicit)
assumption that gravity played no significant role in
the collision. (d) The direction of F,, is the same as
J, 59.8° measured counterclockwise from the +x axis.
33. From Fig. 9-55, +y corresponds to the direction
of the rebound (directly away from the wall) and +x
towards the right. Using unit-vector notation, the
ball’s initial and final velocities are

v; =vc0s@ i — vsin 9]:5.2f—3.0]

and v, =vC0s@ i + vsin 9]:5.2i+3.0],
respectively (with Sl units understood). (a) With m =
0.30 kg, the impulse-momentum theorem (Eq. 9-31)
yields

J=mv, —my, =2(0.30kg)@3.0m/s) () =1.8N.sj.
(b) Using Eqg. 9-35, the force on the ball by the wall
is J/At = (1.8/0.010)j = (180 N)j. By Newton’s third
law, the force on the wall by the ball is (=180 N)j
(that is, its magnitude is 180 N and its direction is
directly into the wall, or “down” in the view pro-
vided by Fig. 9-55).
44. This problem involves both mechanical energy
conservation U; = U,, = K; + K, where U; = 60 J,
and momentum conservation 0 = mqVi+myV,, Where

PERESRET G E-PRE
my = 2my. From the second eq., we find |vy| = 2|v],
which in turn implies (since vy = |v4| and likewise
for v,) <cf. Prob.77>

K =% mvi® = (Vo) (Yamp)(2v2)” = 2K, .

(a) We substitute K; = 2K into the energy conser-
vation relation and find
(],':2K2+K2 = KQ:(J,/3=20\]
(b) And we obtain K3 = 2K, = 2(20) = 40 (J).
46. We refer to the discussion in the textbook (see S.
P. 9-8, which uses the same notation that we use
here) for many of the important details in the
reasoning. Here we only present the primary com-
putational step (using Sl units):
p= M o = 0010+20 pigE0)0.12)
m 0.010
= 3.1x10% (m/s).
50. We think of this as having two parts: the first is
the collision itself — where the bullet passes through
the block so quickly that the block has not had time
to move through any distance yet — and then the
subsequent “leap” of the block into the air (up to
height # measured from its initial position). The first
part involves momentum conservation (with +y up-
ward):

(0.01 kg)(1000 m/s) = (5.0 kg) v
+ (0.01 kg)(400 m/s),
which yields v = 1.2 m/s. The second part involves
either the free-fall egs. from Ch. 2 (since we are
ignoring air friction) or simple energy conservation
from Ch.8. Choosing the latter approach, we have
(¥2)(5.0 kg)(1.2 m/s)? = (5.0 kg) (9.80 m/s?)h, which
gives the result 42 =0.073 m.
53. As hinted in the Pb. statement, the velocity v of
the system as a whole — when the spring reaches the
maximum compression x, — satisfies
myvy; + Mavy; = (my + my) v.
The change in kinetic energy of the system is therefore
AK =% (m1+m2)V2—% myvi? —% mavy!
_ (myvy; +m2V2i)2 —lmlvﬁ —imzv; '
2(my +my) 2 2
which yields K = -35 J. (Although it is not nece-
ssary to do so, still it is worth noting that algebraic
manipulation of the above expression leads to AK =
(%) (mamy) veel*l (ma+ms,), Where vy = vi—v,). Conser-
vation of energy then requires

%kxMZ:_AK:x’n:\/—ZAK :\/—2(—35)

k 1120
=0.25 (m).
56. (a) Let m, be the mass of the block on the left,
v4; be its initial velocity, and v, be its final velocity.
Let mp be the mass of the block on the right, vg; be
its initial velocity, and vz be its final velocity. The
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momentum of the two-block system is conserved, so
M4Vy; + MpVp; = MyV 47+ MpVps
myvy; +mpgVg; —MmMpVp ¢

and vy =
my
_ (LO6E5)+(24)(25) - 249 _ 4 g (o)
16 ' '

(b) The block continues going to the right after the
collision. (c) To see if the collision is elastic, we
compare the total kinetic energy before the collision
with the total kinetic energy after the collision. The
total kinetic energy before is

K; :% mavai +% mpvp :% (1.6)(5.5)°
+2 (24)(2.5)* =317 (J).

The total kinetic energy after is
Kfzé mAvAfZ +% vaBfZ Z% (16)(19)2

+2 (2.4)(4.9)° =317 (J).

Since K; = K, the collision is found to be elastic.

60. First, we find the speed v of the ball of mass m;
right before the collision (just as it reaches its low-
est point of swing). Mechanical energy conserva-
tion (with 2 = 0.700 m) leads to

mygh =%m1v2 = v=,2gh=3.7m/s.

(a) We now treat the elastic collision (with Sl units)
using Eq. 9-67:
m—my | _ 05-25
my+m, 05+25

which means the final speed of the ball is 2.47 m/s .
(b) Finally, we use Eq. 9-68 to find the final speed
of the block:

vy=—2m = 209 37y =123 (mys).
my + my 0.5+25

69. Suppose the objects enter the collision along
lines that make the angles 8> 0 and ¢ > 0 with the x
axis, as shown in the diagram that follows. Both
have the same mass m and the same initial speed v.
We suppose that after the collision the combined
object moves in the positive x direction with speed
V. Since the y component of the total momentum of
the two-object system is conserved,

mv sin @—mv sin ¢ = 0. " \\ B
This means 6= ¢. Since the x com- |
ponent is conserved, 2mv cosé = "N
2mV. We now use V' =v/2 to find o *
that cos@= 1/2. This means 6= 60°. .
The angle between the initial velo- A
cities is 120°. md
71. (a) The thrust of the rocket is given by 7= R vy
where R is the rate of fuel consumption and vy is
the speed of the exhaust gas relative to the rocket.
For this problem R = 480 kg/s and vy = 3.27x10°

m/s, so T = (480 kg/s)(3.27x10° m/s) = 1.57x10° N.

Vif =

(3.7) =-2.47 (mls),

PERELRE GGG AR
(b) The mass of fuel ejected is given by Mze = RAt
where At is the time interval of the burn. Thus, M.
= (480 kg/s)(250 s) = 1.20x10° kg. The mass of the
rocket after the burn is M, = M, — My = (2.55x
10° kg) — (1.20x10° kg) = 1.35x10° kg. (c) Since
the initial speed is zero, the final speed is given by

5
V= v In Mi = (3.27x10%)In 222210
/ M, 1.35x10°

= 2.08x10° (m/s).
109.° (a) Let v be the final velocity of the ball-gun
system. Since the total momentum of the system is
conserved mv; = (m+M) v. Therefore,

v = mvl(m+M) = (60 g)(22 m/s)/(60 g+240 g)
=4.4mls.

(b) The initial kinetic energy is K; = (Y2)mv; and the
final kinetic energy is K, = (Y2)(m+M)v* = (Ya)m*vil
(m+M). The problem indicates AE; = 0, so the di-
fference K—K, must equal the energy U; stored in
the spring:

_1 o, 1(mv)? 1, m
L= —myvf —— =—mv; (1- )
2m+M 2 m+m
_1 . M
== my; .
2 m+m

Consequently, the fraction of the initial kinetic energy
that becomes stored in the spring is

Us__ M 240 _ g0,

K. m+M 604240

131.° The mass of each ball is m, and the initial
speed of one of the balls is vy, = 2.2 m/s. We apply
the conservation of linear momentum to the x and y
axes, respectively.

m vy = mvyr COS@, + mvyr COS6h
and 0 = mvy,Sin6y, — mvy,Sing .
The mass m cancels out of these egs., and we are
left with two unknowns and two egs., which is su-
fficient to solve. (a) The y-momentum eq. can be
rewritten as, using 6 = 60° and v, = 1.1 m/s,

mvy,Siné, = (1.1 m/s) sin60° = 0.95 m/s,
and the x-momentum eq. yields
mvy€0s6; = (2.2 m/s) — (1.1 m/s) cos60°
=1.65m/s.

Dividing these two egs., we find tané, = 0.576
which yields 8, = 30°. We plug the value into either
eg. and find vi,= 1.9 m/s. (b) From the above, we
have &, = 30°. (c) One can check to see if this an
elastic collision by computing

2K - v and

m

and seeing if they are equal (they are), but one must
be careful not to use rounded-off values. Thus, it is
useful to note that the answer in part (a) can be
expressed “exactly” as vi, = v1,(3)"4/2 (and of course

f_.2, 2
— =Vt
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vor = v1,/2 “exactly” — which makes it clear that these
two kinetic energy expressions are indeed equal).
133.° (a) We locate the coordinate origin at the
center of Earth. Then the distance r., of the center
of mass of the Earth-Moon system is given by rm
= my r/(myrtmg), where my, is the mass of the
Moon, my is the mass of Earth, and 7, is their
separation. These values are given in Appendix C.
The numerical result is

22
Fem = 73610 (3.82x10%)

7.36x10% +5.98x10%

= 4.64x10° = 4.6x10° (km).
(b) The radius of Earth is Rz = 6.37x10° m, so
rem!Rg = 0.73 = 73%.
135.° (a) The thrust is R vy Where v = 1200 m/s.
For this to equal the weight Mg where M = 6100 kg,
we must have R = (6100) (9.8)/1200 ~ 50 kg/s. (b)
Using Eqg. 9-42 with the additional effect due to
gravity, we have R v — Mg = Ma
so that requiring @ = 21 m/s? leads to R = (6100)
(9.8+21)/1200 = 1.6x10% (kg/s).
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130.° The diagram below shows the situation as the incident ball (the left-most ball) makes contact with the other
two. It exerts an impulse of the same magnitude on each ball, along the line that joins the centers of the incident
ball and the target ball. The target balls leave the collision along those lines, while the incident ball leaves the
collision along the x axis. The three dotted lines that join the centers of the balls in contact form an equilateral
triangle, so both of the angles marked & are 30°. Let v, be the velocity of the incident ball before the collision and
V' be its velocity afterward. The two target balls leave the collision with the same speed. Let v represent that speed.
Each ball has mass m. Since the x component of the total momentum of the three-ball system is conserved,
mvy = mV + 2myv 0S8,

and since the total kinetic energy is conserved,

()mv? = ()mV? + 2(Ya)mv? .
We know the directions in which the target balls leave the collision so we first eliminate V
and solve for v. The momentum eq. gives V' = vo — 2vc0sé, so

V2=, —4v0vcose+ 4v°c0s°0,
and the energy eq. becomes vy’ = vo” — 4vgvcos@+ 4 v2 cos’@+2v 2. Therefore,

_ 2005(92 vy = 2005320 (10) = 6.93 (m/s).
1+2cos” @ 1+ 2cos” 30°

(a) The discussion and computation above determines the final speed of ball 2 (as labeled in Fig. 9-83) to be 6.9
m/s. (b) The direction of ball 2 is at 30° counterclockwise from the +x axis.  (c) Similarly, the final speed of ball
3is 6.9 m/s. (d) The direction of ball 3 is at —30° counterclockwise from the +x axis. (e) Now we use the
momentum eq. to find the final velocity of ball 1:

V =vy— 2vcosd= 10 m/s — 2(6.93 m/s)cos30° = —2.0 m/s.
So the speed of ball 1 is |V] = 2.0 m/s. (f) The minus sign indicates that it bounces back in the —x direction. The
angle is —180°. (%% 4%)

Prob. 10-1, 2, 4, 10, 15, 21, 26, 31, 39, 41, 47, 51, 55, 63,
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