Chapter 8 Potential Energy and Conservation of Energy

Note TE = thermal energy, KE = kinetic energy, PE =
potential energy, ME = mechanical energy, EPE = elastic
potential energy, GPE = gravitational potential energy.
03. (a) The force of gravity is constant, so the work
it does is given by W = F-d, where F is the force
and d is the displacement. The force is vertically
downward and has magnitude mg, where m is the
mass of the flake, so this reduces to W, = mgh,
where % is the height from which the flake falls.
Thisisequal to the radius r of the bowl. Thus
W, = mgr = (2.00x10® kg)(9.80 m/s)(22.0x10 > m)
=4.31x102 .
(b) The force of gravity is conservative, so the
change in GPE of the flake-Earth system is the
negative of the work done: AU, = —W, = —4.31x10°°
J. (c) The PE when the flake is at the top is greater
than when it is at the bottom by |AU,|. If U, = 0 at
the bottom, then U, = +4.31x107 J at the top. (d) If
U, = 0 a the top, then U, = —-4.31x107° J at the
bottom. (e) All the answers are proportional to the
mass of the flake. If the mass is doubled, all
answers are doubled.
04. (a) The only force that does work on the ball is
the force of gravity; the force of the rod is perpendi-
cular to the path of the ball and so does no work. In
going from itsinitial position to the lowest point on
its path, the ball moves vertically through a distance
equal to the length L of the rod, so the work done
by the force of gravity is
W, = mgl = (0.341 kg)(9.80 m/s%)(0.452 m)
=151J
(b) In going from its initial position to the highest
point on its path, the ball moves verticaly through a
distance equal to L, but this time the displacement
is upward, opposite the direction of the force of
gravity. The work done by the force of gravity is
W, = —mgL = —(0.341 kg)(9.80 m/s’)(0.452 m)
=-151J
(c) The final position of the ball is a the same
height as its initial position. The displacement is
horizontal, perpendicular to the force of gravity.
The force of gravity does no work during this dis-
placement. (d) The force of gravity is conservative.
The change in the GPE of the ball-Earth system is
the negative of the work done by gravity:
AU, = —mglL = — (0.341 kg)(9.80 m/s?)(0.452 m)
=-151J
asthe ball goes to the lowest paint.
this line of reasoning, we find
AU, = +mgL = — (0.341 kg)(9.80 m/s°)(0.452 m)
=151J
as it goes to the highest point.

(e) Continuing

(f) Continuing this

line of reasoning, we have AU, = 0 as it goes to the
point at the same height. (g) The change in the GPE
depends only on the initial and final positions of the
ball, not on its speed anywhere. The change in the PE
is the same since the initial and final positions are the
same.
08. The main challenge for students in this type of
problem seems to be working out the trigonometry
in order to obtain the height of the ball (relative to
the low point of the swing) # = L—Lcosé (for angle
6 measured from vertical as shown in Fig. 8-29).
Once this relation (which we will not derive here
since we have found this to be most easily illustra-
ted at the blackboard) is established, then the princi-
pa results of this problem follow from Eq. 7-12
(for W,) and Eq. 8-9 (for U). (a) The vertical com-
ponent of the displacement vector is downward
with magnitude £, so we obtain

W=ﬁg -d = mgh = mgL(1-cos6) = (5.00 kg)

(9.80 m/s?)(2.00 m)(1-cos30°) = 13.1 J.

(b) From Eq. 8-1, we have AU, = -W, = —mgL
(1-cosp) =-13.1J. (c) Withy = h, Eqg. 8-9yields
U, = mgL(1l-cosf) = 13.1J. (d) As the angle in-
creases, we intuitively see that the height 4 in-
creases (and, less obvioudly, from the mathematics,
we see that cosd decreases so that 1-cosé increases),
so the answers to parts () and (c) increase, and the
absolute value of the answer to part (b) also increases.
12. We use Eq. 8-18, representing the conservation of
ME (which neglects friction and other dissipative effects).

(a) In the solution to Phb. 4 we found AU = mgL asit
goes to the highest point. Thus, we have

AK+AU,=0 or Kip—Ko+mgL=0,
which, upon requiring Kiqp, = 0, gives Ko = mgL and
thus leads to

Vo= % =,/2¢gL

=/2(2.80m/s?)(0.452m) = 2.98 ms,
(b) We dso found in the Ph.4 that the PE change is
AU, = —mgL in going from the initial point to the
lowest point (the bottom). Thus,

AK + AUg = 0 or Kbonom - KO - mgL = 0,
which, with K, = mgL, leads t0 Kyotom = 2mgL.
Therefore,

Vbottom — \/ZKbottom Im= \/4gL

=4(9.80m/s?)(0.452m) = 4.21 /.
(c) Since there is no change in height (going from
initial point to the rightmost point), then AU, = 0,
which implies AK = 0. As a result, the speed is the
same aswhat it wasinitialy,
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Vright = Vo = 2.98 m/s.

(d) It is evident from the above manipulations that
the results do not depend on mass. Thus, a different
mass for the ball must lead to the same results.

18. We denote m as the mass of the block, # = 0.40
m as the height from which it dropped (measured
from the relaxed position of the spring), and x the
compression of the spring (measured downward so
that it yields a positive value). Our reference point
for the GPE is the initial position of the block. The
block drops atotal distance 4+x, and the final GPE
is —mg(h+x). The spring PE is (*)kx? in the final
situation, and the KE is zero both at the beginning
and end. Since energy is conserved

K+ U; = K+ Upor 0= —mg(h+x) + (Y)kx?,
which isasecond degree eg. in x. Using the
quadratic formula, its solution is

mg i\/(mg)2 +2mgh k
X = :
k

Now mg =19.6 N, 7 =0.40 m, and & = 1960 N/m,
and we choose the positive root so that x > 0,

_19.6+4/19.62 + 2(19.6)(0.40)(1960)
x —_

1960
21. (a) At Q the block (which isin circular motion
at that point) experiences a centripetal acceleration
vIR leftward. We find v from energy conservation:
K, + U, =Ko+ Upor0+mgL = (Y)mv*+ mgR.
Using the fact that # = 5R, we find mv? = 8mgR.
Thus, the horizontal component of the net force on
theblock at Qis  F = mvIR = 8mg = 8(0.032 kg)
(9.8m/s%) = 25N, and points left (in the same
direction as a). (b) The downward component of
the net force on the block at Q is the downward
force of gravity F = mg = (0.032 kg)(9.8 m/s) =
0.31 N. (c) To barely make the top of the loop, the

centripetal force there must equal the force of gravity:

2

v
top _ 2
m%—mg: mv

=0.10 (m).

=mgR.

top
Thisrequires adifferent value of 4 than was used above.
K, + U, =Kip+ Upp, 0+ mgh = (1/2)mv,0p2+ mghy,p,
mgh = (Y2)(mgR) + mg(2R).
Consequently, # = 2.5R = (2.5)(0.12m) = 0.3m.
(d) The normal force Fy, for speeds v, greater than
(gR)Y? (which are the only possibilities for non-zero

Fy— seethe solution in the previous part), obeys
2

%
Fy=m—+——mg,
N R g

from Newton's second law. Since vZis related to / by
energy conservation

K+ Uy =Kip+Ujy = gh =%Vf + 2gR,

then the normal force, as a function for / (so long

as h > 25R — see solution in previous part),
becomes
Fy

Fy= ng%— Smg.
Thus, the graph for / >
25R consists of a
straight line of positive
dope 2mg/R (which
can be set to some convenient values for graphing
purposes). Note that for # < 2.5R, the normal force
is zero.

23. (a) Asthe string reaches its lowest point, its ori-
gina PE U = mgL (measured relative to the lowest
point) is converted into KE. Thus,

mgl = (1/2)mv2 = v:\/@.
With L = 1.20 m we obtain v = 4.85 m/s. (b) In this
case, the total ME is shared between kinetic (Y9)mv,*
and potential mgy,. We note that y, = 2r where r =
L—d = 0.450 m. Energy conservation leads to mgL =
mvy®> + mgy,, Wwhich vyieds vy =

A 2gL —2g(2r) = 2.42 m/s.
28. We convert to Sl units and choose upward as the
+y direction. Also, the relaxed position of the top
end of the spring is the origin, so the initial compre-
ssion of the spring (defining an equilibrium situa-
tion between the spring force and the force of gravi-
ty) isyp = —0.100 m and the additional compression
brings it to the position y; = —0.400m. (a) When the
stone is in the equilibrium (a = 0) position, Newton's
second law becomes
Frer =mg , Fpiing—mg =0,
—k(—0.100) — (8.00)(9.80) = 0,
where Hooke's law (Eg. 7-21) has been used. This
leads to a spring constant equal to £ = 784 N/m.
(b) With the additional compression (and release)
the acceleration is no longer zero, and the stone will
start moving upwards, turning some of its EPE
(stored in the spring) into KE. The amount of EPE
at the moment of releaseis, using Eg. 8-11,
U = (YWky? = (¥2)(784)(—0.400)= 62.7 (J).
(c) Its maximum height -, is beyond the point that
the stone separates from the spring (entering free-
fall motion). As usual, it is characterized by having
(momentarily) zero speed. If we choose the y; posi-
tion as the reference position in computing the GPE,
then
Ki+U =K+ U, or 0+(1/2)ky12=0+mgh,
where 4 = y, — y; is the height above the release
point. Thus, mgh (the GPE) is seen to be equa to
the previous answer, 62.7 J, and we proceed with
the solution in the next part.
(d) Wefind & = ky{7(2mg) = 0.800 m, or 80.0 cm.
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29. We refer to its starting point as A4, the point
where it first comes into contact with the spring as
B, and the point where the spring is compressed ||
= 0.055 m as C. Point C is our reference point for
computing GPE. EPE (of the spring) is zero when
the spring is relaxed. Information given in the
second sentence alows us to compute the spring
constant. From Hooke's law, we find

k=F/x=270N/0.02m = 1.35x10* N/m.
(a) The distance between points 4 and B is ¢ and we
note that the total sliding distance /+x is related to
the initial height % of the block (measured relative
to C) by h=(+]) sng,
where the incline angle 6 is 30°. ME conservation
leads to

Ky+ Uy=Ke+ Ucor 0+ mgh =0+ (Yo)kx?,
which yields

h = kx®l(2mg) = (1.35x10" N/m)(0.055 m)?/

[2(12 kg)(9.80 m/s9)] = 0.174 m.

Therefore,

L+ x|=h1sn@=0.174m/sin30° = 0.35 m.

(b) From this result, we find £ = 0.35m — 0.055m =
0.29 m, which means that Ay = —¢sinf=-0.15min
dliding from point 4 to point B. Thus, Eq. 8-18 gives

AK+AU=0 or (Y)mvs’+mgAh=0,
which yields vz =./-2gAh =/~ 2(9.80)(-0.15) =
1.7 (m/s).
34. The distance the marble travels is determined by
itsinitial speed (and the methods of Chapter 4), and
theinitial speed is determined (using energy conser-
vation) by the original compression of the spring.
We denote % as the height of the table, and x as the
horizontal distance to the point where the marble
lands. Then x = v, ¢t and & = (Y9)gt” (since the verti-
cal component of the marble's “launch velocity” is
zero). From these we find x = vo (24/g)Y2 We note
from this that the distance to the landing point is
directly proportional to the initial speed. We denote
vo,1 be the initial speed of the first shot and D; =
2.20-0.27 = 1.93 m be the horizontal distance to its
landing point; similarly, vo,; is the initial speed of
the second shot and D = 2.20 m is the horizontal
distance to its landing spot. Then

V0,2/V0,1 = D/Dl = Vo2 = (D/Dl) Vo1 -
When the spring is compressed an amount 7, the
EPE is (¥9)k¢> When the marble leaves the spring
its KE is (¥9)mvd. ME is conserved: (Y)mv¢ = (Yo)k(
2 and we see that the initial speed of the marble is
directly proportional to the original compression of
the spring. If ¢, is the compression for the first shot
and /; is the compression for the second, then vo,, =
(¢2/1)vo,1. Relating thisto the previous result, we obtain

U, =(D/Dy) f1 = (2.20 m/1.93 m)(1.10 cm)
=125cm.
36. The free-body diagram for the boy is shown
below. Fy is the normal force of the ice on him and
m is his mass. The net inward force is mgcosé —Fy
and, according to Newton's second law, this must be
equal to mv¥R, where v is the speed of the boy. At
the point where the boy leaves the ice Fy = 0, so
gcosé = vIR. We wish to find his
speed. If the GPE is taken to be
zero when he is at the top of the
ice mound, then his PE at the
time shownis B
U = -mgR (1-cosb). R
He starts from rest and his kinetic energy at the time
shown is (¥9mv? Thus conservation of energy gives
0= (¥9)mv*— mgR (1-cosb),
or v?= 2gR(1-cos#). We substitute this expression
into the eg. developed from the second law to obtain
gcosl = 2g(1-cosd). This gives cos@ = 2/3. The
height of the boy above the bottom of the mound is
h=Rcosf=(2/3)R = (2/3)(13.8 m) =9.20 m.
40. (a) Using Eq. 7-8, we have Wapiea = (8.0 N)
(0.70 m) = 56 J. (b) Using Eq. 8-31, the TE
generated is
AEw =fid = (5.0N)(0.70m) =3.5J.
59. Theinitid and final KEs are zero, and we set up
energy conservation in the form of Eg. 8-33 (with
W = Q) according to our assumptions. Certainly, it
can only come to a permanent stop somewhere in
the flat part, but the question is whether this occurs
during its first pass through (going rightward) or its
second pass through (going leftward) or its third
pass through (going rightward again), and so on. If
it occurs during its first pass through, then the TE
generated iISAEy, = fid where d < L and f; = g, If
it occurs during its second pass through, then the
total TE is AEy, = . mg(L+d) where we again use
the symbol & for how far through the level area it
goes during that last pass (so 0 < 4 < L).
Generalizing to the n™ pass through, we see that
AEwn = tmg [(n-1)L + d].
In thisway, we have
mgh = pymg [ (n-1)L +d ]
which ssimplifies (when # = L/2 isinserted) to
d 1
—=1+
L 241,
The first two terms give 1+1/(244) = 3.5 so that the
requirement 0<d/L <1demandsthat »=3.We
arrive at the conclusionthat  d/L = 1/2, or
d=LI2=(40cm)/2=20cm
and that this occurs on its third pass through the flat
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region.
97. Eq. 8-33 gives
mgyy= K; + mgy; — Ew, (0.50)(9.8)(0.80) =
(¥%)(0.50)(4.00)* + (0.50)(9.8)(0) — Ex
whichyields Ey, =4.00-3.92 =0.080 (J).

( jyang@mail.ntou.edu.tw, Thanks.)
Ex.1: Prob.8-51; Ex.2: Prob.8-129.
8
(
)
AU
AU =-W. (8-1)
Xi Xf
AU =—[" F(x)dx. (8-6)
Yi
Yr -
AU = mg(yr— yi) = mgAy. (8-7)
»=0
U=0 y
U Uly) = mgy . (8-9)
F=—kx
X
U) :% Jor? (8-11)
x=0 U=0
Erec K
U Ene=K+U, (8-12)
Emec
K2+ U2=K1+ Uj_ , (8—17)

AEme: = AK + AU = 0. (8-18)
F(x)
Ulx)
F(x) =-dUldx. (8-22)
U(x) x  F(x)
K(x) = Emec — U(x), (8-24)
Erec
( K=0 v=0) U(x)
0( Fix)=0
w
AEmec
W = AEme. = AK + AU. (8-26,25)
AEw,
(
)
W = AEmec + AEh. (8-33)
AE, S
d
AEn = fid. (8-31)
E (
)
w
W= AE = AE e+ AEqy+ AEiy.  (8-35)
(w=0)
AEmec + AEn + AEin = 0, (8-36)
Ermec2 = Emec1 — AEh — AEjn (8-37)
1 2
At
AE
P, = AEIAt, (8-40)
P=dEld:. (8-41)
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64." We use conservation of ME: the ME must be
the same at the top of the swing as it is initialy.
Newton's second law is used to find the speed, and
hence the KE, at the top. There the tension force T’
of the string and the force of gravity are both
downward, toward the center of the circle. We
notice that the radius of the circleisr = L —d, so the

law can be written
2
T+mg=m

L-d’
where v is the speed and m is the mass of the ball.
When the ball passes the highest point with the least

possible speed, the tension is zero. Then
2

V_d = v=, g(L-d).

We take the GPE of the ball-Earth system to be zero
when the ball is at the bottom of its swing. Then the
initial PE is mgL. The initia KE is zero since the
ball starts from rest. The final PE, at the top of the
swing, is 2mg(L — d) and the final KE is (¥9m* =
mg(L—d)/2 using the above result for v. Conservation of
energy yields
mgL = 2mg(L—d) + (Y9)mg(L—-d) = d = (3/5)L.
With L = 1.20 m, we have d = 0.60(1.20 m) = 0.72
m. Notice that if d is greater than this value, so the
highest point is lower, then the speed of the ball is
greater as it reaches that point and the ball passes
the point. If 4 is less, the ball cannot go around.
Thus the value we found for d is alower limit.
68.”* We use Sl units som = 0.030 kg and 4 = 0.12 m.
(a) Since there is no change in height (and we assume
no changesin EPE), then AU = 0 and we have
AEmecn = AK = ~(Y9mvy® = —3.8x10° J.
where vy = 500 m/s and the final speed is zero. (b)
By Eq. 8-33 (with ¥ = 0) we have AEy, = 3.8x10% J,
which implies
f=AEn/d=31x10"N,
using Eg. 8-31 with f; replaced by f (effectively
generalizing that eq. to include a greater variety of
dissipative forces than just those obeying Eqg. 6-2).

mg=m
& L

Pb. 9-1,3, 5, 15, 17, 20, 26, 29, 33, 44, 46, 50, 53, 54, 56,
60, 66, 71, 77, 81, 109, 130, 131, 133, 135 (tentatively)

47.* We work this using the English units (with g =
32 ft/s), but for consistency we convert the weight
to pounds mg = (9.00z)(1Ib/160z) = 0.561b, which
implies m = 0.018 Ib-sft (which can be phrased as
0.018 dlug as explained in Appendix D). And we
convert the initial speed to feet-per-second
v; = (81.8 mi/h)[ (5280 ft/mi)/3600 s/h] = 120 ft/s
or amore “direct” conversion from Appendix D can
be used. Equation 8-30 provides AEy, = —AE e for
the energy “lost” in the sense of this problem. Thus,
AEw = ()m(v—vf) = (¥5)(0.018)(120°-110)
= 20 (ft-lb).
70.”* The work required is the change in the GPE as
a result of the chain being pulled onto the table.
Dividing the hanging chain into a large number of
infinitesimal segments, each of length dy, we note
that the mass of a segment is (m/L)dy and the
change in PE of a segment when it is a distance |y|
below the tabletop is
dU=(mlL) g y|dy =—(mlIL) g y dy.
Since y is negative-valued (we have +y upward and
the origin is at the tabletop). The total PE changeis
1mg L, 1
A== %) =g
The work required to pull the chain onto the table is
therefore W =AU =mgLI32
= (0.012 kg)(9.8 m/s?)(0.28 m)/32 = 0.0010 J.
law ; principle ; theorem ;work ; power
; external force ; nonconservative/conservative
force / ; gravitational/elastic potential
energy / ; thermal energy ; mechanical
energy ; conservation of mechanical energy
; law of conservation of energy
reference configuration/point /
equilibrium / ; bob ; Easter ;
beagle ; limb ; pendulum ; round trip
;rock-climbing ; dloth ; tamale
; turning point

0
e gl .

; stable/neutral
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