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Chapter 7  Kinetic Energy and Work 
該模擬應如何程序化以便給實習醫師硬膜外療程正確的感覺？ 

01. With speed v = 1.12×104 m/s, we find  K = (½) 
mv 

2 = (½)(2.9×105)(1.12×104)2 = 1.8×1013 (J). 
03. (a) From Table 2-1, we have v 

2 = v0
2 + 2a∆x. 

Thus, 
v = (v0

2 + 2a∆x) = 2.9×107 m/s. 
(b) The initial kinetic energy is 

Ki = (½)mv0
2 = 4.8×10−13 J. 

The final kinetic energy is 
Kf = (½)mv 

2 = 6.9×10−13 J. 
The change in kinetic energy is  

∆K = (6.9×10–13 − 4.8×10–13) J = 2.1×10–13 J. 
08. Using Eq. 7-8 (and Eq. 3-23), we find the work 
done by the water on the ice block: 
W = dF

rr
⋅  = (210 î − 150 ĵ )·(15 î − 12 ĵ )  

= (210)(15) + (−150)(−12) = 5.0×103 (J). 
11. We choose +x as the direction of motion (so a 
and F are negative-valued).  (a) Newton’s second 
law readily yields F = (85 kg)(−2.0 m/s2 i) so that  

F = | F
r

| = 1.7×102 N. 
(b) From Eq. 2-16 (with v = 0) we have 

0 = v0
2 + 2a∆x ⇒ ∆x =

)0.2(2
)37( 2

−
− = 3.4×102 (m). 

Alternatively, this can be worked using the work- 
energy theorem. (c) Since F is opposite to the direc- 
tion of motion (so the angle φ between F and d (= 
∆x i) is 180°) then Eq. 7-7 gives the work done as 
W = −F∆x = −5.8×104

 J. (d) In this case, Newton’s 
second law yields F = (85 kg)(−4.0 m/s2 i) so that 

F = | F
r

| = 3.4×102 N. 
(e) From Eq. 2-16, we now have 

∆x =
)0.4(2

)37( 2

−
− = 1.7×102 (m). 

(f) The force F is again opposite to the direction of 
motion (so the angle φ is again 180°) so that Eq. 7-7 
leads to W = −F∆x = −5.8×104 J.  The fact that this 
agrees with the result of part (c) provides insight 
into the concept of work. 
17. (a) We use F to denote the upward force exerted 
by the cable on the astronaut. The force of the cable 
is upward and the force of gravity is mg downward. 
Furthermore, the acceleration of the astronaut is 
g/10 upward. According to Newton’s second law, F − 
mg = mg/10, so F = 11mg/10. Since the force F and 
the displacement d are in the same direction, the 
work done by F is 

WF = F d = (11/10)m g d 
= (11/10)(72 kg)(9.80 m/s2)(15 m) = 1.164×104 J, 

which (with respect to significant figures) should be 
quoted as 1.2×104 J.  (b) The force of gravity has 

magnitude mg and is opposite in direction to the 
displacement. Thus, using Eq.7-7, the work done by 
gravity is 

Wg = −mgd = −(72 kg)(9.80 m/s2)(15 m) 
= −1.058×104 J, 

which should be quoted as –1.1×104 J. (c) The total 
work done is W = 1.164×104 J − 1.058×104 J = 1.06 
×103 J. Since the astronaut started from rest, the 
work-kinetic energy theorem tells us that this 
(which we round to 1.1×103 J) is her final kinetic 
energy.  (d) Since K = (½)mv2, her final speed is 

v =
m
K2 =

72
)1006.1(2 3× = 5.4 (m/s). 

18. (a) Using notation common to many vector 
capable calculators, we have (from Eq. 7-8) W = 
dot ([20.0,0] + [0, −(3.00)(9.80)], [0.500 ∠ 30.0º]) = 
1.31 J. (b) Eq.7-10 (along with Eq.7-1) then leads to  

v = )kg 00.3/()J 31.1(2 = 0.935 m/s. 
25. We make use of Eq. 7-25 and Eq. 7-28 since the 
block is stationary before and after the displacement. 
The work done by the applied force can be written as 

Wa = −Ws = (½)k(xf
2−xi

2). 
The spring constant is k = 80/0.020 = 4.0×103 (N/m). 
With Wa = 4.0 J, and xi = −2.0 cm, we have 

xf = 22
i

a x
k
W

+± = 2
3

)020.0(
100.4

)0.4(2
−+

×
±  

= ±0.049 (m) = ±4.9 (cm). 
29. (a) As the body moves along the x axis from xi = 
3.0 m to xf = 4.0 m the work done by the force is 

W = ∫
f

i

x

x
x dxF = ∫ −

f

i

x

x
dxx)6( = −3(xf

2− xi
2)  

= −3(4.02−3.02) = −21 (J). 
According to the work-kinetic energy theorem, this 
gives the change in the kinetic energy: 

∆K = (½)m(vf
2−vi

2) = W, 
where vi is the initial velocity (at xi) and vf is the 
final velocity (at xf). The theorem yields 

vf = 22
iv

m
W

+ = 2)0.8(
0.2

)21(2
+

− = 6.6 (m/s). 

(b) The velocity of the particle is vf = 5.0 m/s when 
it is at x = xf. The work-kinetic energy theorem is 
used to solve for xf. The net work done on the 
particle is W = −3(xf

2−xi
2), so the theorem leads to 

−3(xf
2−xi

2) = (½)m(vf
2−vi

2). 

Thus,       xf = 222 )(
6 iif xvvm

+−−  

222 0.3)0.80.5(
6
0.2

+−−= = 4.7 (m). 
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31. According to the graph the acceleration a varies 
linearly with the coordinate x. We may write a = α x, 
where α is the slope of the graph. Numerically, 

α = (20 m/s2)/(8.0 m) = 2.5 s−2. 
The force on the brick is in the +x direction and, 
according to Newton’s second law, its magnitude is 
given by F = a/m = (α/m) x. If xf is the final coordi- 
nate, the work done by the force is 

W = dxF
fx

∫
 

0 
= dxx

m
fx

∫
 

0 

α = 2

2 fx
m
α  

= (2.5)(2)−1(10)−1(8.0)2 = 8.0×102 (J). 
35. We choose to work this using Eq. 7-10 (the 
work-kinetic energy theorem). To find the initial 
and final kinetic energies, we need the speeds, so 

v = dx/dt = 3.0 – 8.0t + 3.0t 
2  

in SI units. Thus, the initial speed is vi = 3.0 m/s and 
the speed at t = 4 s is vf = 19 m/s. The change in 
kinetic energy for the object of mass m = 3.0 kg is 
therefore 

∆K = (½)m(vf
2−vi

2) = 528 J 
which we round off to two figures and (using the 
work-kinetic energy theorem) conclude that the 
work done is W = 5.3×102 J. 
41. The power associated with force F is given by 
P = F·v, where v is the velocity of the object on 
which the force acts. Thus, 

P = vF
rr
⋅  = F v cosφ = (122 N)(5.0 m/s)cos37° 

       = 4.9×102 W. 
46. (a) Since the force exerted by the spring on the 
mass is zero when the mass passes through the 
equilibrium position of the spring, the rate at which 
the spring is doing work on the mass at this instant 
is also zero.  (b) The rate is given by P = F·v = 
−Fv, where the minus sign corresponds to the fact 
that F and v are anti-parallel to each other. The 
magnitude of the force is given by F = kx = (500 
N/m)(0.10 m) = 50 N, while v is obtained from con- 
servation of energy for the spring-mass system: 

E = K + U = (½)mv2 + (½)kx2  
= (½)(0.30 kg)v2+ (½)(500 N/m)(0.10 m)2 

which gives v = 7.1 m/s. Thus 
P = −Fv = −(50 N)(7.1 m/s) = −3.5×102 W. 

50.• (a) The compression of the spring is d = 0.12 m. 
The work done by the force of gravity (acting on 
the block) is, by Eq. 7-12, 
W1 = mgd = (0.25 kg)(9.80 m/s2)(0/12 m) = 0.29 J. 

(b) The work done by the spring is, by Eq. 7-26, 
W2 = −(½)kd 

2 = −(½)(250 N/m)(0.12 m)2 = −1.8 J. 
(c) The speed vi of the block just before it hits the 
spring is found from the work-kinetic energy theo- 
rem (Eq. 7-15). 

∆K = 0 − (½)mvi
2 = W1 + W2 

which yields 

vi = 25.0
)8.129.0)(2())(2( 21 −−

=
+−

m
WW = 3.5 (m/s). 

(d) If we instead had vi’ = 7 m/s, we reverse the 
above steps and solve for d’. Recalling the theorem 
used in part (c), we have 

2 2
1 2

1 10
2 2imv W W mgd kd′ ′ ′ ′ ′− = + = −  

which (choosing the positive root) leads to 

′ =
+ + ′

d
mg m g mkv

k
i

2 2 2

 

which yields d´ = 0.23 m. In order to obtain this 
result, we have used more digits in our intermediate 
results than are shown above (so vi = (12.048)1/2 = 
3.471 (m/s) and vi’ = 6.942 m/s). 
62.• Using Eq. 7-8, we find 

W = dF
rr

⋅ = F(cosθ î +sinθ ĵ )·(x î +y ĵ )  
= Fxcosθ + Fysinθ , 

where x = 2.0 m, y = −4.0 m, F = 10 N, and θ = 150°. 
Thus, we obtain W = –37 J. Note that the given mass 
value (2.0 kg) is not used in the computation. 
65.• One approach is to assume a “path” from ri to rf and 
do the line-integral accordingly. Another approach is to 
simply use Eq. 7-36, which we demonstrate: 

W = dxFdxF
f

i

f

i

y

y
x

x

x
x ∫∫ +

 

 

 

 
= dxdxx  3   2  

3

3 

4

2 ∫∫
−−

+  

with SI units understood. Thus, we obtain W = 12 − 
18 = −6 (J). 
70.• (a) To hold the crate at equilibrium in the final 
situation, F must have the same magnitude as the 
horizontal component of the rope’s tension T sinθ, 
where θ is the angle between the rope (in the final 
position) and vertical: 

θ = sin−1(4.00/12.0) = 19.5°. 
But the vertical component of the tension supports 
against the weight: Tcosθ = mg. Thus, the tension is 

T = (230)(9.80)/cos19.5° = 2391 (N) 
and F = (2391)sin19.5° = 797 (N). An alternative 
approach based on drawing a vector triangle (of 
forces) in the final situation provides a quick solu- 
tion.  (b) Since there is no change in kinetic energy, 
the net work on it is zero.  (c) The work done by 
gravity is Wg = Fg·d = −mgh, where h = L (1−cosθ) 
is the vertical component of the displace- ment. 
With L = 12.0 m, we obtain Wg = −1547 J which 
should be rounded to three figures: −1.55 kJ.  (d) 
The tension vector is everywhere perpendicular to 
the direction of motion, so its work is zero (since 
cos90° = 0).  (e) The implication of the previous 
three parts is that the work due to F is −Wg (so the 
net work turns out to be zero). Thus, WF = −Wg = 
1.55 kJ.  (f) Since F does not have constant magni- 
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tude, we cannot expect Eq. 7-8 to apply. 
73.• A convenient approach is provided by Eq. 7-48. 
P = F v = (1800 kg+4500 kg)(9.8 m/s2)(3.80 m/s) = 
235 kW. Note that we have set the applied force 
equal to the weight in order to maintain constant 
velocity (zero acceleration). 
(如發現錯誤煩請告知 jyang@mail.ntou.edu.tw, Thanks.) 

重點整理－第 7章 動能與功 
合力對物體(質點)所作的淨功 
等於其動能改變量Wext = Kf − Ki = ∆K 

動能  與質量 m及速率 v (v遠小於光速)之質點
運動有關的動能K為  

K = (½)mv 
2   (動能).   (7-1) 

功 W  功是經由作用於物體之力移轉入物體的
能量或從此物體移轉出的能量，能量移轉入物體

為正功，能量從物體移轉出則為負功。 
定力作功  定力 F

r
對質點於位移 d

r
內所作的功為 

W = Fd cosφ = dF
rr

⋅  (功,定力)  (7-7,8) 
其中φ為 F

r
和 d

r
間的夾角。只有 F

r
沿著位移 d

r
方

向的分量才能對物體作功。當兩個或以上的力作

用於一物體時，淨功為各別力所作的功的和，亦

等於這些力之淨力所作的功。 
功與動能  質點之動能改變量 ∆K與對質點所作
的淨功 W的關係為 

∆K =Kf − Ki = W (功–動能定理), (7-10) 
其中 Ki為質點之初動能，而 Kf為作功後之動能， 
7-10式重新整理後得 

Kf = Ki + W .          (7-11) 
重力作功  當物體位移 d

r
時，作用於質量m的似

質點物體之重力 gF
r
所作的功 Wg為 

Wg = mgd cosφ = −mg∆y ,     (7-12) 
其中φ為 gF

r
和 d

r
間的夾角，∆y為高度改變量。 

物體升高或降低時所作的功  當似質點物體升
高或降低時，外施力所作的功 Wa與重力所作的

功 Wg及物體動能改變量 ∆K有關聯，即 
∆K = Kf − Ki = Wa + Wg .    (7-15) 

假如初動能等於末動能時，7-15式簡化為 
Wa = −Wg ,           (7-16) 

這表示施力移轉入物體的能量與重力從物體移

轉出之能量相等。 
彈力  彈簧產生的力 spF

r
為 

spF
r

= −k d
r

  (虎克定律), (7-20) 
式中 d

r
是彈簧自由端離其於彈簧處於鬆弛狀態

(未壓縮亦未伸長)時的位置之位移，而 k 為彈簧
常數(彈簧硬度的測量)。若 x 軸沿著彈簧，且以

彈簧在鬆弛狀態時，彈簧的自由端為原點，則

7-20式可寫為    Fx = −k x,   (虎克定律). (7-21) 
彈力為變力，隨著彈簧自由端的位移而改變。 
彈力所作的功  假如物體與彈簧自由端連接，當
物體從初位置 xi運動到末位置 xf時，彈力對此物

體所作的功 Wsp為 
Wsp = (½)kxi

2 − (½)kxf
2.      (7-25) 

若 xi = 0及 xf = x，則 7-25式變為 
Wsp = −(½)kx2.          (7-26) 

變力所作的功  當作用於似質點物體之力 F
r
與

物體的位置有關時，物體從座標為(xi, yi, zi)的初
位置 ri運動到座標為(xf, yf, zf)的末位置 rf，則該力

對物體所作的功須藉積分求得。若設分量 Fx只與

x有關但與 y或 z無關、分量 Fy只與 y有關但與
x 或 z 無關，以及分量 Fz只與 z 有關但與 x 或 y
無關，則所作功為 

∫∫∫ ++=
′ f

i

f

i

f

i

z

z
z

y

y
y

x

x
x dzFdyFdxFW

 

 

 

 

 

 
.  (7-36) 

假如 F
r
只有 x方向分量，則 7-36式簡化為 

W ∫=
f

i

x

x
x dxF

 

 
.           (7-32) 

功率   由力產生的功率為力對物體作功的速
率。假如力於時距∆t 內作功∆W，則該力在該時
距內產生的平均功率為 

Pav = ∆W / ∆t,           (7-42) 
瞬時功率為作功的時變率 

  P = dW / dt,             (7-43) 
假如力與物體運動方向的夾φ角，則瞬時功率為 

  P = Fv cosφ = F
r

· v
r ,     (7-47,48) 

其中 v
r
為物體的(瞬時)速度。 

time interval,時距/時間間隔;energy,能量; (principle of) 
energy conservation,能量守恆(原理); kinetic energy,動
能; work,功; net work,淨功; joule (J),焦耳; work–kinetic 
energy theorem,功–動能定理; gravitational force,重力; 
spring force,彈力; varying force,變力; Hooke’s law,虎克
定律; force constant (of spring),(彈)力常數; spring cons- 
tant,彈簧常數; applied force,施力; power,功率; instanta- 
neous/average work,瞬時/平均功率; practicing doctor,
實習醫師; anesthetic fluid,麻醉液; epidural (硬膜外) 
space (腔) /procedure (療程), spinal canal,椎管; spinal 
cord,脊椎神經/脊髓; ligament,韌帶; spinous,刺狀的; 
block,積木; cart,運貨車; crate,條板箱; helicopter,直升
飛機; ladle,杓子; legendary,傳奇的; locomotives,機車/
火車頭; luge,(競賽用的)仰臥滑行小雪橇; stoop,屈身
彎腰; transfer,移轉; •備忘錄• 

 
 




