Chapter 7 Kinetic Energy and Work

01. With speed v=1.12x10* m/s, we find K = (%)
mv? = (1%)(2.9x10°)(1.12x10%* = 1.8x10" (J).
03. (a) From Table 2-1, we have v = V,* + 2aAX.
Thus,
V= (Vo’ + 2aAX) = 2.9x10" m/s.

(b) The initial kinetic energy is

Ki = ("2)mvy> = 4.8x107" J.
The final kinetic energy is

Ki= (Y)mv=6.9x10""J.
The change in kinetic energy is

AK = (6.9x107"° —4.8x107) I =2.1x10" I.

08. Using Eq. 7-8 (and Eq. 3-23), we find the work
done by the water on the ice block:

W=F.d =(210i-150])(15i-12])
= (210)(15) + (=150)(=12) = 5.0x10° (J).
11. We choose +X as the direction of motion (so a
and F are negative-valued). (a) Newton’s second
law readily yields F = (85 kg)(—2.0 m/s” i) so that
F=|F|=1.7x10°N.
(b) From Eq. 2-16 (with v=0) we have
37’
2(-2.0)
Alternatively, this can be worked using the work-
energy theorem. (c) Since F is opposite to the direc-
tion of motion (so the angle ¢ between F and d (=
AX i) is 180°) then Eq. 7-7 gives the work done as
W = —FAx = —5.8x10"J. (d) In this case, Newton’s
second law yields F = (85 kg)(—4.0 m/s’i) so that
F=|F|=3.4x10°N.
(e) From Eq. 2-16, we now have

0=Vy +28AX = AX=— =3.4x10” (m).

2
= COD°__ 1 7%10? (m).
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(f) The force F is again opposite to the direction of
motion (so the angle ¢ is again 180°) so that Eq. 7-7
leads to W= —FAx=—-5.8x10" J. The fact that this
agrees with the result of part (¢) provides insight
into the concept of work.
17. (a) We use F to denote the upward force exerted
by the cable on the astronaut. The force of the cable
is upward and the force of gravity is mg downward.
Furthermore, the acceleration of the astronaut is
0/10 upward. According to Newton’s second law, F —
mg = mg/10, so F = 11mg/10. Since the force F and
the displacement d are in the same direction, the
work done by F is

We=Fd=(11/10)mgd

= (11/10)(72 kg)(9.80 m/s*)(15 m) = 1.164x10" J,
which (with respect to significant figures) should be
quoted as 1.2x10* J.  (b) The force of gravity has

magnitude mg and is opposite in direction to the
displacement. Thus, using Eq.7-7, the work done by
gravity is
W, = —mgd = —(72 kg)(9.80 m/s*)(15 m)
=-1.058x10"7J,

which should be quoted as —1.1x10* J. (¢) The total
work done is W= 1.164x10* J — 1.058x10* J = 1.06
x10° J. Since the astronaut started from rest, the
work-kinetic energy theorem tells us that this

(which we round to 1.1x10° J) is her final kinetic
energy. (d) Since K = (4)mV?, her final speed is

3
v 2K _ [20.06x 10 ) _ 5.4 ().
m 72

18. (a) Using notation common to many vector

capable calculators, we have (from Eq. 7-8) W =

dot([20.0,0] + [0, —(3.00)(9.80)], [0.500 £30.0°]) =

1.31]J. (b) Eq.7-10 (along with Eq.7-1) then leads to
v=4/2(1.31J)/(3.00 kg) = 0.935 m/s.

25. We make use of Eq. 7-25 and Eq. 7-28 since the

block is stationary before and after the displacement.
The work done by the applied force can be written as

Wa = -We = (kO -X7).
The spring constant is k = 80/0.020 = 4.0x10° (N/m).
With W, =4.0 J, and X, = —2.0 cm, we have
Xt :i\/ Wa x? =i\/ 240 (—0.020)*
k 4.0x10°
=10.049 (m) = +4.9 (cm).
29. (a) As the body moves along the X axis from X =
3.0 m to % = 4.0 m the work done by the force is

W= J.Xf dex=J-xf (—6x)dx= —3(X"— %)
% X

=-3(4.0>-3.0%) = 21 (J).
According to the work-kinetic energy theorem, this
gives the change in the kinetic energy:
AK = ()mvi-v’) = W,
where V; is the initial velocity (at %) and v is the
final velocity (at X;). The theorem yields

vi= | 2 =\/ 22D | 8.0)? = 6.6 (/).
m 2.0

(b) The velocity of the particle is vt = 5.0 m/s when
it is at X = X. The work-kinetic energy theorem is
used to solve for X. The net work done on the
particle is W= —3(x’—x?), so the theorem leads to

=306 —x7) = ()MVE-VP).

m
Xt :\/—E(V% -V + ¢

Thus,

2\/_%0(5,02 -8.0%)+3.0> =4.7 (m).
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31. According to the graph the acceleration a varies
linearly with the coordinate X. We may write a = aX,
where « is the slope of the graph. Numerically,

a= (20 m/s?)/(8.0 m) =2.5 s,
The force on the brick is in the +X direction and,
according to Newton’s second law, its magnitude is

given by F = a/m= (a/m)X. If X is the final coordi-
nate, the work done by the force is

X X
W= I ' Fdx= ﬁj " xdx=-2x2
0 mJo 2m

=(2.5)(2) (10)(8.0)* = 8.0x10* (J).

35. We choose to work this using Eq. 7-10 (the
work-kinetic energy theorem). To find the initial
and final kinetic energies, we need the speeds, so

v =dx/dt = 3.0 - 8.0t + 3.0t°
in SI units. Thus, the initial speed is v = 3.0 m/s and
the speed at t = 4 s is vy = 19 m/s. The change in
kinetic energy for the object of mass m= 3.0 kg is
therefore

AK = (B)m(vi—v?) = 528 J
which we round off to two figures and (using the
work-kinetic energy theorem) conclude that the
work done is W= 5.3x10>J.
41. The power associated with force F is given by

P = F-v, where V is the velocity of the object on
which the force acts. Thus,

P=F .V =Fvcos¢= (122 N)(5.0 m/s)cos37°
=4.9x10* W.
46. (a) Since the force exerted by the spring on the
mass is zero when the mass passes through the
equilibrium position of the spring, the rate at which
the spring is doing work on the mass at this instant
is also zero. (b) The rate is given by P = F-v =
—Fv, where the minus sign corresponds to the fact
that F and v are anti-parallel to each other. The
magnitude of the force is given by F = kx = (500
N/m)(0.10m) = 50N, while Vv is obtained from con-
servation of energy for the spring-mass system:
E=K+U=(%)m’+ (%)k<
= (14)(0.30 kg)V?+ (*2)(500 N/m)(0.10 m)*
which gives v= 7.1 m/s. Thus
P =—Fv=—(50 N)(7.1 m/s) = -3.5x10° W.
50.° (a) The compression of the spring is d=0.12 m.
The work done by the force of gravity (acting on
the block) is, by Eq. 7-12,

W, = mgd = (0.25 kg)(9.80 m/s*)(0/12 m) = 0.29 J.
(b) The work done by the spring is, by Eq. 7-26,

W, = —(Y5)kd? = —(%4)(250 N/m)(0.12 m)* = -1.8 J.
(¢) The speed Vv; of the block just before it hits the
spring is found from the work-kinetic energy theo-
rem (Eq. 7-15).

AK =0 — (B)mvi’ =W, + W,

which yields

v :\/(—2)(\/\/1 +W,) :\/(—2)(0.29—1.8) ~ 3.5 (ms).
m 0.25

(d) If we instead had V' = 7m/s, we reverse the

above steps and solve for d'. Recalling the theorem

used in part (c¢), we have

O_%rnvi/Z :Vv],+W2l — n,gd/_%kdd

which (choosing the positive root) leads to

d4r— mg + /Mg’ +mkv'’

- k
which yields d” = 0.23m. In order to obtain this
result, we have used more digits in our intermediate
results than are shown above (so Vi = (12.048)"* =
3.471 (m/s) and Vi’ = 6.942 m/s).
62.° Using Eq. 7-8, we find

W=F .d= F(cos@i +sin¢9} )-(Xi +yj )

= Fxcos@+ Fysinf,
where X =2.0m, y=—-4.0m, F = 10N, and &= 150°.
Thus, we obtain W= —37 J. Note that the given mass
value (2.0 kg) is not used in the computation.
65.° One approach is to assume a “path” from r; to r; and

do the line-integral accordingly. Another approach is to
simply use Eq. 7-36, which we demonstrate:

Xg Yt -4 -3
W=J- Fdx + dex=_[ 2xdx+ | 3dx
X; 2 3

Yi
with SI units understood. Thus, we obtain W= 12 —
18=-6(J).
70.° (a) To hold the crate at equilibrium in the final
situation, F must have the same magnitude as the
horizontal component of the rope’s tension T sin6,
where 6 is the angle between the rope (in the final
position) and vertical:

0= sin"'(4.00/12.0) = 19.5°.

But the vertical component of the tension supports
against the weight: Tcosd= mg. Thus, the tension is
T=(230)(9.80)/c0s19.5° = 2391 (N)
and F = (2391)sin19.5° = 797 (N). An alternative
approach based on drawing a vector triangle (of
forces) in the final situation provides a quick solu-
tion. (b) Since there is no change in kinetic energy,
the net work on it is zero. (¢) The work done by
gravity is Wy = Fgd = —mgh, where h =L (1—cos6)
is the vertical component of the displace- ment.
With L = 12.0 m, we obtain Wy = —1547 J which
should be rounded to three figures: —1.55 kJ. (d)
The tension vector is everywhere perpendicular to
the direction of motion, so its work is zero (since
c0s90° = 0). (e) The implication of the previous
three parts is that the work due to F is ~Wj (so the
net work turns out to be zero). Thus, W = -W, =
1.55kJ. (f) Since F does not have constant magni-
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tude, we cannot expect Eq. 7-8 to apply.

73.° A convenient approach is provided by Eq. 7-48.
P = Fv = (1800 kg+4500 kg)(9.8 m/s*)(3.80 m/s) =
235 kW. Note that we have set the applied force
equal to the weight in order to maintain constant
velocity (zero acceleration).
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