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Chapter 6  Force and Motion – II 
賽車能在天花板上倒吊行駛嗎？ 

02. The free-body diagram for the 
player is shown next. FN is the normal 
force of the ground on the player, mg is 
the force of gravity, and f is the force 
of friction. The force of friction is 
related to the normal force by f = µkFN. 
We use Newton’s second law applied to the vertical 
axis to find the normal force. The vertical compo- 
nent of the acceleration is zero, so we obtain FN – 
mg = 0; thus, FN = mg. Consequently,  
µk = f / FN = (470 N)/(79 kg × 9.80 m/s2) = 0.61 . 

07. We choose +x horizontally rightwards and +y 
upwards and observe that the 15 N force has com- 
ponents Fx = F cosθ and Fy = –F sinθ. (a) We apply 
Newton’s second law to the y axis: 

FN – Fsinθ – mg = 0 ⇒  
FN = (15)sin40° + (3.5)(9.8) = 44 (N). 

With µk = 0.25, Eq. 6-2 leads to fk = 11 N.  (b) We 
apply Newton’s second law to the x axis: 

F cosθ– fk = ma 

⇒ a = =
−°

5.3
1140cos)15( 0.14 (m/s2). 

Since the result is positive-valued, then the block is 
accelerating in the +x (rightward) direction. 
08. We first analyze the forces on the pig of mass m. 
The +x direction is “downhill.’’ The incline angle is 
θ. Application of Newton’s 
second law to the x- and y- 
axes leads to 

mgsinθ –fk = ma  
and    FN – mgcosθ = 0 . 
Solving these along with Eq. 6-2 (fk = µkFN) pro- 
duces the following result for the pig’s downhill 
acceleration: 

a = g sinθ − µk cosθ = 0 . 
To compute the time to slide from rest through a 
downhill distance l, we use Eq. 2-15: 

l = v0t + (½)at 
2 ⇒ t a/2l= . 

We denote the frictionless (µk = 0) case with a 
prime and set up a ratio:  
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which leads us to conclude that if t/t' = 2 then a' = 
4a. Putting in what we found out above about the 
accelerations, we have 

g sinθ = 4(g sinθ −µk cosθ). 
Using θ = 35°, we obtain µk = 0.53. 
15. (a) The free-body diagram for the block is shown 
below. F is the applied force, FN is the normal force 
of the wall on the block, f is the force of friction, 

and mg is the force of gravity. To determine if the 
block falls, we find the magnitude f of the force of 
friction required to hold it without accelerating and 
also find the normal force of the wall on the block. 
We compare f and µsFN. If f < µsFN, the block does 
not slide on the wall but if f > µsFN, the block does 
slide. The horizontal component of Newton’s second 
law is  F − FN = 0, so FN = F = 12 N and µsFN = 
(0.60)(12 N) = 7.2 N. The vertical component is f − 
mg = 0, so f = mg = 5.0 N. Since f < µsFN the block 
does not slide.  (b) Since the block does not move 
f = 5.0 N and FN = 12 N. The force of the wall on 
the block is 

wF
r

 = −FN î  + f ĵ  = (−12 N) î + (5.0 N) ĵ ,  
where the axes are as shown on Fig. 6-25 of the text. 
21. The free-body diagrams for block B and for the 
knot just above block A are shown 
next. T1 is the tension force of the 
rope pulling on block B or pulling 
on the knot (as the case may be), 
T12 is the tension force exerted by 
the second rope (at angle θ = 30°) 
on the knot, f is the force of static 
friction exerted by the horizontal surface on block B, 
FN is normal force exerted by the 
surface on block B, WA is the 
weight of block A (WA is the 
magnitude of mAg), and WB is the 
weight of block B (WB = 711 N is 
the magnitude of mBg).  For each object we take 
+x horizontally rightward and +y upward. Applying 
Newton’s second law in the x and y axes for block B 
and then doing the same for the knot results in four 
equations: 

T1 − fs,max = 0,  FN − WB = 0,   
T2 cosθ − T1 = 0, and  T2 sinθ − WA = 0, 

where we assume the static friction to be at its 
maximum value (permitting us to use Eq. 6-1). 
Solving these equations with µs = 0.25, we obtain 
WA = 103 N ≈ 1.0×102 N. 
29. The free-body diagrams for the two blocks, 
treated individually, are shown below (first m and 
then M). F' is the contact 
force between the two 
blocks, and the static 
friction force fs is at its 
maximum value (so Eq. 
6-1 leads to fs = fs,max = 
µsF' where µs = 0.38).  Treating the two blocks to- 
gether as a single system (sliding across a friction- 
less floor), we apply Newton’s second law (with +x 
rightward) to find an expression for the accelera- 
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tion. 
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This is equivalent to having analyzed the two 
blocks individually and then combined their eqs. 
Now, when we analyze the small block individually, 
we apply Newton’s second law to the x and y axes, 
substitute in the above expression for a, and use Eq. 
6-1. 

F − F’ = ma ⇒ F’ = F − m
Mm

F
+

 

and        fs − mg = 0 ⇒ µsF’ − mg = 0 . 
These expressions are combined (to eliminate F') 
and we arrive at 

)]/(1[ Mmm
mgF

s +−
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µ
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which we find to be F = 4.9×102 N. 
32. Using Eq. 6-16, we solve for the area A = 2mg/ 
(Cρvt

2), which illustrates the inverse proportion- 
ality between the area and the speed-squared. Thus, 
when we set up a ratio of areas – of the slower case 
to the faster case – we obtain  Aslow/ Afast = (310 
km/h)2 / (160 km/h)2 = 3.75 . 
33. For the passenger jet Dj = Cρ1Avj

2/2, and for the 
prop-driven transport Dt = Cρ2Avt

2/2, where ρ1 and 
ρ2 represent the air density at 10 km and 5.0 km, 
respectively. Thus the ratio in question is 
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37. The magnitude of the acceleration of the cyclist 
as it rounds the curve is given by v 2/R, where v is 
the speed of the cyclist and R is the radius of the 
curve. Since the road is horizontal, only the 
frictional force of the road on the tires makes this 
acceleration possible. The horizontal component of 
Newton’s second law is f = mv 

2/R. If FN is the 
normal force of the road on the bicycle and m is the 
mass of the bicycle and rider, the vertical compo- 
nent of Newton’s second law leads to FN = mg. 
Thus, using Eq. 6-1, the maximum value of static 
friction is fs,max = µsFN = µsmg. If the bicycle does 
not slip, f ≤ µsmg. This means 

R
v 2

≤ µsg ⇒ R ≥
g

v

sν

2
. 

Consequently, the minimum radius with which a 
cyclist moving at 29 km/h = 8.1 m/s can round the 
curve without slipping is 

Rmin ===
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41. At the top of the hill, the situation is similar to 
that of S.P. 6-7 but with the normal force direction 
reversed.  Adapting Eq. 6-19, we find  

FN = m (g − v 2/R). 
Since FN = 0 there (as stated in the problem) then v 2 
= gR. Later, at the bottom of the valley, we reverse 
both the normal force direction and the acceleration 
direction (from what is shown in Sample Problem 
6-7) and adapt Eq.6-19 accordingly. Thus we obtain 

FN = m (g + v 2/R) = 2mg = 1372 N ≈ 1.37×103 N. 
47. The free-body diagram (for the airplane of mass 
m) is shown below. We note that Fl is the force of 
aerodynamic lift and a points rightwards in the 
figure. We also note that a = v 2/R, where v = 480 
km/h = 133 m/s. Applying Newton’s law to the axes 
of the problem (+x rightward and +y 
upward) we obtain 

Flsinθ = m v 2/R and Flcosθ = mg, 
where θ = 40°. Eliminating mass from 
these equations leads to 

tanθ = v 2/gR, 
which yields R = v 2/g tanθ = 2.2 ×103 m. 
49. For the puck to remain at rest the magnitude of 
the tension force T of the cord must equal the gravi- 
tational force Mg on the cylinder. The tension force 
supplies the centripetal force that keeps the puck in 
its circular orbit, so T = mv 

2/r. Thus Mg = mv 
2/r. 

We solve for the speed: 

v ===
50.1

)200.0)(80.9)(50.2(
m

Mgr 1.81 (m/s). 

52.• (a) We note that R (the horizontal distance from 
the bob to the axis of rotation) is the circum- 
ference of the circular path divided by 2π; therefore, 
R = 0.94/2π = 0.15 (m).  The angle that the cord 
makes with the horizontal is now easily found:  

θ = cos−1 (R/L) = cos−1 (0.15/0.90) = 80º. 
The vertical component of the force of tension in 
the string is Tsinθ and must equal the downward 
pull of gravity (mg). Thus,  T = mg/sinθ = 0.40 N.  
Note that we are using T for tension (not for the 
period).   (b) The horizontal component of that 
tension must supply the centripetal force (Eq. 6-18), 
so we have Tcosθ = mv 2/R. This gives speed v = 
0.49 m/s. This divided into the circumference gives 
the time for one revolution: τ = 0.94/0.49 = 1.9 (s). 
57.• (a) Refer to the figure in the textbook accom- 
panying S.P. 6-3 (Fig. 6-5).  Replace fs with fk in 
Fig. 6-5(b). With θ = 60º, we apply Newton’s second 
law to the “downhill” direction:  
 mg sinθ − f = ma and f = fk = µk FN = µk mg cosθ . 

Thus,     a = g(sinθ − µk cosθ ) = 7.5 m/s2. 
(b) The direction of the acceleration a is down the 
slope. (c) Now the friction force is in the “down- 
hill” direction (which is our positive direction) so 
that we obtain  

a = g(sinθ + µk cosθ ) = 9.5 m/s2. 
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(d) The direction is down the slope. 
58.• (a) The x component of F tries to move the 
crate while its y component indirectly contributes to 
the inhibiting effects of friction (by increasing the 
normal force).  Newton’s second law implies 
x direction:   Fcosθ – fs = 0,   
y direction:   FN – Fsinθ – mg = 0. 
To be “on the verge of sliding” means fs = fs,max = 
µsFN. Solving these eqs. for F (actually, for the ratio 
of F to mg) yields 

cos sin
s

s

F
mg

µ
θ µ θ

=
−

. 

This is plotted below (θ in degrees). (b) The denomi- 
nator of our expression (for F/mg) vanishes when 

cosθ –µssinθ  = 0 ⇒ θinf = tan−1(1/µs) 
For µs = 0.70, we obtain θinf = tan−1(1/µs) = 55°.  (c) 
Reducing the coeffici- 
ent means increasing 
the angle by the condi- 
tion in part (b). (d) For 
µs = 0.60, we haveθinf 
= tan−1(1/µs) = 59°. 
 
59.• (a) The x component of F contributes to the 
motion of the crate while its y component indirectly 
contributes to the inhibiting effects of friction (by 
increasing the normal force).  Along the y direc- 
tion, we have FN – Fcosθ – mg = 0 and along the x 
direction we have Fsinθ – fk = 0 (since it is not 
accelerating, according to the problem).  Also, Eq. 
6-2 gives fk = µkFN.  Solving these equations for F 
yields 

sin cos
k

k

mgF µ
θ µ θ

=
−

 . 

(b) When θ < θ0 = tan−1µs, F will not be able to 
move the mop head. 
61.• (a) Using F = µsmg, the coefficient of static 
friction for the surface between the two blocks is µs 
= (12 N)/(39.2 N) = 0.31, where mt g = (4.0)(9.8) = 
39.2 N is the weight of the top block. Let M = mt + 
mb = 9.0 kg be the total system mass, then the maxi- 
mum horizontal force has a magnitude Ma = Mµsg 
= 27 N.  (b) The acceleration (in the maximal case) 
is a = µsg = 3.0 m/s2. 
68.• The free-body diagrams for the two boxes are 
shown below. T is the magnitude of the force in the 
rod (when T > 0 the rod is said to be in tension and 
when T < 0 the rod is under compression), FN2 is 
the normal force on box 2 (the uncle box), FN1 is 
the normal force on the aunt box (box 1), f1 is 
kinetic friction force on the aunt box, and f2 is 
kinetic friction force on the uncle box. Also, m1 = 
1.65 kg is the mass of the aunt box and m2 = 3.30 

kg is the mass of the uncle box (which is a lot of 
ants!).  For each block we take +x downhill (which 
is toward the lower-right in these diagrams) and +y 
in the direction of the normal force. Applying 
Newton’s second law to the x and y 
directions of first box 2 and next 
box 1, we arrive at four equations: 

m2gsinθ − f2 − T = m2a,  
FN2 = m2gcosθ, 

m1gsinθ − f1 + T = m2a, 
and      FN1 = m1gcosθ, 
which, when combined with Eq. 6-2 (f1 = µ1FN1 
where µ1 = 0.226 and f2 = µ2FN2 where µ2 = 0.113), 
fully describe the dynamics of the system. (a) We 
solve the above equations for the 
tension and obtain 

T =
21

21

mm
gmm

+
(µ1−µ2)cosθ = 1.05 N. 

(b) These equations lead to an 
acceleration equal to 

a = g sinθ −
21

2211

mm
mm

+
+ µµ gcosθ = 3.62 m/s2. 

(c) Reversing the blocks is equivalent to switching 
the labels. We see from our algebraic result in part 
(a) that this gives a negative value for T (equal in 
magnitude to the result we got before). Thus, the 
situation is as it was before except that the rod is 
now in a state of compression. 
90.• For simplicity, we denote the 70° angle as θ 
and the magnitude of the push (80 N) as P. The 
vertical forces on the block are the downward 
normal force exerted on it by the ceiling, the down- 
ward pull of gravity (of magnitude mg) and the 
vertical component of P (which is upward with 
magnitude P sinθ). Since there is no acceleration in 
the vertical direction, we must have 

FN = Psinθ − mg, 
in which case the leftward-pointed kinetic friction 
has magnitude 

fk = µk (Psinθ − mg). 
Choosing +x rightward, Newton’s second law leads 
to 

Pcosθ − fk = ma ⇒ 

a =
m

mgPP k )sin(cos −− θµθ
,   

which yields a = 3.4 m/s2 when µk = 0.40 and m = 
5.0 kg. 
97.• The coordinate system we wish to use is shown 
in Fig. 5-18 in the textbook, so we resolve this 
horizontal force into appropriate components.  (a) 
Applying Newton’s second law to the x (directed 
uphill) and y (directed away from the incline 
surface) axes, we obtain 
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Fcosθ – fk – mgsinθ = ma, 
FN – F sinθ – mgcosθ = 0. 

Using fk = µk FN, these equations lead to 
a = (F/m)(cosθ –µk sinθ) – g(sinθ+µk cosθ), 

which yields a = −2.1 m/s2, or |a| = 2.1 m/s2, for µk = 
0.30, F = 50 N and m = 5.0 kg. (b) The direction of 
a is down the plane.  (c) With v0 = +4.0 m/s and v 
= 0, Eq. 2-16 gives 

∆x = −4.02/[(2)(−2.1)] = 3.9 (m). 
(d) We expect µs, not µk; otherwise, an object start- 
ed into motion would immediately start decelerat- 
ing (before it gained any speed)! In the minimal 
expectation case, where µs = 0.30, the maximum 
possible (downhill) static friction is, using Eq. 6-1, 

fs,max = µs FN = µs (F sinθ + mg cosθ), 
which turns out to be 21 N. But in order to have no 
acceleration along the x axis, we must have 

fs = F cosθ – mg sinθ = 10 N. 
(the fact that this is positive 
reinforces our suspicion that fs 
points downhill). Since the fs 
needed to remain at rest is 
less than fs,max then it stays 
at that location. 
 
Ex.3-2, Pb. 6-25. 
(如發現錯誤煩請告知 jyang@mail.ntou.edu.tw, Thanks.) 

 
•急速時代的變格：急速科學, Discovery Channel 
 
friction,摩擦/摩擦力; frictional force,摩擦力; negative 
lift,負升力; static/kinetic frictional force,靜/動摩擦力; 
coefficient of static friction,靜摩擦係數; coefficient of 
kinetic friction,動摩擦係數; drag force,拖曳力; drag 
coefficient,拖曳係數; effective cross-sectional area,等效
截面積; terminal speed,終端速率; uniform circular 
motion,等速率圓周運動; centripetal acceleration/force,
向心加速度/力; center of curvature,曲率中心; banked,
有坡面的; bobsled,大雪橇; skydiving,特技跳傘; spread 
eagle,大鵬展翅(鯤魚化為大鵬鳥，一飛數萬里。用以
比喻前程遠大，不可限量。); Dare Devil,蠻勇之人; 
Grand Prix國際汽車大獎賽; pit,(賽車中途的)加油站,
修理站; 
 
•備忘錄 
 
 
 
 
 
 
 
 
 
 

 
重點整理－第 6章 力與運動─II 

摩擦力  f：當作用力F試著沿著表面滑動物體
時，從表面來的摩擦力作用於此物體上，摩擦力

平行表面並且其方向為阻止滑動，摩擦力導源於

物體與接觸表面間的鍵結。若物體尚未滑動時，

摩擦力為靜摩擦力fs；若物體滑動時，則為動摩

擦力fk。 
摩擦力之三性質  ♦性質1.若物體尙未運動，則

靜摩擦力與施力F平行表面的分量兩者大小相
等，而fs的方向為與該分量相反。♦性質2. fs有一

最大值fs,max，其為  fs,max = µs FN ，式中µs稱為靜

摩擦係數而FN為正向力的大小。若F平行表面的
分量大於fs,max，則物體開始於表面上滑動。♦性

質3.若物體開始於表面上滑動，則摩擦力大小立
即減小至一定值fk，其為  fk = µk FN ，其中µk為

動摩擦係數。 
拖曳力 D  當物體與空氣(或其它流體)作相對運
動時，其受拖曳力作用，此力阻止相對運動而且

指向流體相對於物體之流動方向，拖曳力的大小

藉由實驗決定的拖曳係數 C與相對速率 v產生關
聯，其為 D = (½)CρAv 

2， 
式中ρ為流體密度(每單位體積之質量)，A為物體
的等效截面積(取垂直相對速度 v之截面積)。 
終端速率 vt  當鈍形物體在空氣中下落夠深時，
物體所受的拖曳力與其所受的重力 Fg 兩者大小

變為相等，之後物體以固定的終端速率 vt下落,  
其為 vt = ACFg ρ/2 。 
等速率圓周運動  若質點以等速率 v於半徑為 R
之圓周或圓弧上運動，則稱為質點作等速率圓周

運動，此質點於是有向心加速度, 其大小為  a = 
v 

2/R；此加速度是由於作用於質點之淨向心力而
產生，此向心力大小為  f = m v 

2/R， 
其中m為質點之質量；向量a及F均指向質點路徑
的曲率中心。 
 
 




