Chapter 6

02. The free-body diagram for the -
player is shown next. Fy is the normal
force of the ground on the player, mg is
the force of gravity, and f is the force 7
of friction. The force of friction is
related to the normal force by f= z4Fy. mg
We use Newton’s second law applied to the vertical
axis to find the normal force. The vertical compo-
nent of the acceleration is zero, so we obtain Fy —
mg = 0; thus, Fy = mg. Consequently,
=1/ Fy= (470 N)/(79 kg x 9.80 m/s2) = 0.61 .
07. We choose +x horizontally rightwards and +y
upwards and observe that the 15 N force has com-
ponents F, = Fcos@ and F, = —F'sin6. (a) We apply
Newton’s second law to the y axis:
Fy—Fsinf-mg=0=
Fy=(15)sin40° + (3.5)(9.8) = 44 (N).
With z4,=0.25, Eq. 6-2 leads to f, = 11 N. (b) We
apply Newton’s second law to the x axis:
Fcos@- fr,=ma
—a= —(15)“’; ‘;OO “1 014 (m/sd).
Since the result is positive-valued, then the block is
accelerating in the +x (rightward) direction.
08. We first analyze the forces on the pig of mass m.
The +x direction is “downhill.”” The incline angle is
6. Application of Newton’s Y\fk
second law to the x- and y-
axes leads to

mgsin@ —f;, = ma

and Fy—mgcos@=0.
Solving these along with Eq. 6-2 (f; = wFy) pro-
duces the following result for the pig’s downhill
acceleration:

a=gsinfd— ycosf=0.
To compute the time to slide from rest through a
downhill distance ¢, we use Eq. 2-15:

(=vot + (V)at> = t=+20/a .

We denote the frictionless (44 = 0) case with a
prime and set up a ratio:

t_2/a \/7
t Jaia Va

which leads us to conclude that if ##' = 2 then a’' =

4a. Putting in what we found out above about the

accelerations, we have

gsind=4(gsin@—py cosb).
Using 8= 35°, we obtain g = 0.53.
15. (a) The free-body diagram for the block is shown
below. F is the applied force, Fy is the normal force
of the wall on the block, f is the force of friction,
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and mg is the force of gravity. To determine if the
block falls, we find the magnitude f of the force of
friction required to hold it without accelerating and
also find the normal force of the wall on the block.
We compare f and g Fy. If f< uFy, the block does
not slide on the wall but if /> 1 Fy, the block does
slide. The horizontal component of Newton’s second
lawis F — Fy=0,s0 Fy=F = 12N and uFy =
(0.60)(12N) = 7.2N. The vertical component is /' —
mg =0, so f=mg = 5.0 N. Since f'< uFy the block
does not slide. (b) Since the block does not move
f=5.0N and Fy = 12 N. The force of the wall on
the block is

F FN1 +f] =(- 12N)1+(50N)J,
where the axes are as shown on Fig. 6-25 of the text.
21. The free-body diagrams for block B and for the
knot just above block 4 are shown
next. T, is the tension force of the
rope pulling on block B or pulling
on the knot (as the case may be),
Ty, is the tension force exerted by
the second rope (at angle 8 = 30°)
on the knot, f is the force of static
friction exerted by the horizontal surface on block B,
Fy is normal force exerted by the
surface on block B, W, is the
weight of block 4 (W, is the
magnitude of m,Q), and Wp is the
weight of block B (W =711 N is
the magnitude of mzQ). For each object we take
+x horizontally rightward and +y upward. Applying
Newton’s second law in the x and y axes for block B
and then doing the same for the knot results in four
equations:

Tl _J[s,max:Oa FN_ WBZOa
Trcos@—T,=0,and T,sinf@— W,=0,
where we assume the static friction to be at its
maximum value (permitting us to use Eq. 6-1).
Solving these equations with g = 0.25, we obtain

W,;=103 N~ 1.0x10” N.

29. The free-body diagrams for the two blocks,
treated individually, are shown below (first m and
then M). F’ is the contact
force between the two
blocks, and the static
friction force f, is at its
maximum value (so Eq.
6-1 leads to f; = fimar =
MF" where y; = 0.38).  Treating the two blocks to-
gether as a single system (sliding across a friction-
less floor), we apply Newton’s second law (with +x
rightward) to find an expression for the accelera-
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tion.

F=m_.,a= a= .
total maM

This is equivalent to having analyzed the two
blocks individually and then combined their egs.
Now, when we analyze the small block individually,
we apply Newton’s second law to the x and y axes,
substitute in the above expression for a, and use Eq.
6-1.

F

m+M
and fi—mg=0= uF’—mg=0.
These expressions are combined (to eliminate F)
and we arrive at

F-F=ma=F =F-m

F= e
w,[1=m/(m+M)]’

which we find to be F =4.9x10* N.
32. Using Eq. 6-16, we solve for the area 4 = 2mg/
(Cpv/?), which illustrates the inverse proportion-
ality between the area and the speed-squared. Thus,
when we set up a ratio of areas — of the slower case
to the faster case — we obtain A,/ Apg = (310
km/h)*/ (160 km/h)* = 3.75 .
33. For the passenger jet D; = CplAvJ-2/2, and for the
prop-driven transport D, = Cp,Av*/2, where p; and
o represent the air density at 10 km and 5.0 km,
respectively. Thus the ratio in question is

Dj _ pvj _(038)(1000%) _ )3
0.67)(500%)

37. The magnitude of the acceleration of the cyclist
as it rounds the curve is given by v¥/R, where v is
the speed of the cyclist and R is the radius of the
curve. Since the road is horizontal, only the
frictional force of the road on the tires makes this
acceleration possible. The horizontal component of
Newton’s second law is ' = mv*/R. If Fy is the
normal force of the road on the bicycle and m is the
mass of the bicycle and rider, the vertical compo-
nent of Newton’s second law leads to Fy = mg.
Thus, using Eq. 6-1, the maximum value of static
friction is fymax = (Fy = pmg. If the bicycle does
not slip, /< umg. This means
2 2

Y < g =>R> LA

R Vg
Consequently, the minimum radius with which a
cyclist moving at 29 km/h = 8.1 m/s can round the
curve without slipping is

2
Ryw == @D 5y ),
v.g  (0.32)(9.8)
41. At the top of the hill, the situation is similar to
that of S.P. 6-7 but with the normal force direction

reversed. Adapting Eq. 6-19, we find

D, pz"zz

Fy=m (g —v¥R).
Since Fy = 0 there (as stated in the problem) then v?
= gR. Later, at the bottom of the valley, we reverse
both the normal force direction and the acceleration
direction (from what is shown in Sample Problem
6-7) and adapt Eq.6-19 accordingly. Thus we obtain
Fy=m(g+v*/R)=2mg=1372 N~ 1.37x10° N.

47. The free-body diagram (for the airplane of mass
m) is shown below. We note that F, is the force of
aerodynamic lift and a points rightwards in the
figure. We also note that a = v*/R, where v = 480
km/h = 133 m/s. Applying Newton’s law to the axes
of the problem (+x rightward and +y !

upward) we obtain 16 ﬁ'[

F,sin@=mv*/R and F cos@= mg,

where €= 40°. Eliminating mass from
these equations leads to R

tan@= v*/gR, me
which yields R = v?/g tan6= 2.2 x10° m.
49. For the puck to remain at rest the magnitude of
the tension force 7 of the cord must equal the gravi-
tational force Mg on the cylinder. The tension force
supplies the centripetal force that keeps the puck in
its circular orbit, so 7 = mv*/r. Thus Mg = mv*/r.
We solve for the speed:

e \/Mgr _ \/ (2.50)(9.80)(0200) _ | o, (s
m 1.50
52.° (a) We note that R (the horizontal distance from
the bob to the axis of rotation) is the circum-
ference of the circular path divided by 27; therefore,
R =0.94/27 = 0.15 (m). The angle that the cord
makes with the horizontal is now easily found:
0= cos™' (R/L) = cos™" (0.15/0.90) = 80°.

The vertical component of the force of tension in
the string is 7sind and must equal the downward
pull of gravity (mg). Thus, T = mg/sind= 0.40 N.
Note that we are using T for tension (not for the
period).  (b) The horizontal component of that
tension must supply the centripetal force (Eq. 6-18),
so we have Tcos@ = mv*/R. This gives speed v =
0.49 m/s. This divided into the circumference gives
the time for one revolution: 7= 0.94/0.49 = 1.9 (s).
57.° (@) Refer to the figure in the textbook accom-
panying S.P. 6-3 (Fig. 6-5). Replace f; with f; in
Fig. 6-5(b). With 8= 60°, we apply Newton’s second
law to the “downhill” direction:

mgsind— f=ma and f=f; = w Fy= . mg cosé.
Thus, a=g(sinfd— yycos@)=17.5 m/s>.
(b) The direction of the acceleration a is down the
slope. (€) Now the friction force is in the “down-
hill” direction (which is our positive direction) so
that we obtain

a = g(sind+ pycosd)=9.5 m/s”.
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(d) The direction is down the slope.
58.° (@) The x component of F tries to move the
crate while its y component indirectly contributes to
the inhibiting effects of friction (by increasing the
normal force). Newton’s second law implies
x direction:  Fcosf—f; =0,
ydirection:  Fy— Fsing—mg = 0.
To be “on the verge of sliding” means f; = f; yu =
1Fy. Solving these eqs. for F' (actually, for the ratio
of F' to mg) yields

Fo_ Hy

mg cosf—pu sinf
This is plotted below (& in degrees). (b) The denomi-
nator of our expression (for F/mg) vanishes when

cos@—-usingd =0= 6,,= tan_l(l/ 1)

For x4, = 0.70, we obtain ,,,= tan"'(1/44,) = 55°. ()
Reducing the coeffici-  "j#/mg
ent means increasing 03
the angle by the condi-
tion in part (b). (d) For
;= 0.60, we haved,,
=tan"'(1/4) = 59°.
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59.° (a) The x component of F contributes to the
motion of the crate while its y component indirectly
contributes to the inhibiting effects of friction (by
increasing the normal force). Along the y direc-
tion, we have Fy — Fcosé — mg = 0 and along the x
direction we have Fsind — f; = 0 (since it is not
accelerating, according to the problem). Also, Eq.
6-2 gives f; = wFy. Solving these equations for F
yields

F—__ HM8

sin@ — u, cosd

(b) When 0 < 6 = tan"'y,, F will not be able to
move the mop head.
61.° (a) Using F' = ugng, the coefficient of static
friction for the surface between the two blocks is z
= (12 N)/(39.2 N) = 0.31, where m,g = (4.0)(9.8) =
39.2 N is the weight of the top block. Let M = m, +
mp = 9.0 kg be the total system mass, then the maxi-
mum horizontal force has a magnitude Ma = Mug
=27 N. (b) The acceleration (in the maximal case)
is a = ug =3.0 m/s’.
68.° The free-body diagrams for the two boxes are
shown below. T is the magnitude of the force in the
rod (when 7 > 0 the rod is said to be in tension and
when 7 < 0 the rod is under compression), Fu, is
the normal force on box 2 (the uncle box), Fy is
the normal force on the aunt box (box 1), f; is
kinetic friction force on the aunt box, and f, is
kinetic friction force on the uncle box. Also, m; =
1.65 kg is the mass of the aunt box and m, = 3.30

kg is the mass of the uncle box (which is a lot of
ants!). For each block we take +x downbhill (which
is toward the lower-right in these diagrams) and +y
in the direction of the normal force. Applying
Newton’s second law to the x and y
directions of first box 2 and next
box 1, we arrive at four equations:
mygsin@— f, — T'=mya,
Fy, = mygcos,
migsin@— f1 + T=ma,
and Fyi = mgcosb,
which, when combined with Eq. 6-2 (fi = wFm
where z4 = 0.226 and f; = (oFy, where 1 = 0.113),
fully describe the dynamics of the system. (a) We
solve the above equations for the
tension and obtain
T=M(/¢1—/¢2)cos0= 1.05 N.

m; +m,

(b) These equations lead to an
acceleration equal to

a=g siné’—wgcos9= 3.62 m/s.

(c) Reversing the blocks is equivalent to switching
the labels. We see from our algebraic result in part
(a) that this gives a negative value for T (equal in
magnitude to the result we got before). Thus, the
situation is as it was before except that the rod is
now in a state of compression.
90.° For simplicity, we denote the 70° angle as &
and the magnitude of the push (80 N) as P. The
vertical forces on the block are the downward
normal force exerted on it by the ceiling, the down-
ward pull of gravity (of magnitude mg) and the
vertical component of P (which is upward with
magnitude Psiné). Since there is no acceleration in
the vertical direction, we must have
Fy=Psinf—mg,
in which case the leftward-pointed kinetic friction
has magnitude
i = i (Psin@— mg).
Choosing +x rightward, Newton’s second law leads
to
Pcos@— f, = ma =
4 _ Pcos@— p, (Psinf —mg)

m
which yields @ = 3.4 m/s* when 24 = 0.40 and m =
5.0 kg.

97.° The coordinate system we wish to use is shown
in Fig. 5-18 in the textbook, so we resolve this
horizontal force into appropriate components. (&)
Applying Newton’s second law to the x (directed
uphill) and y (directed away from the incline
surface) axes, we obtain
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Fcos@— f, — mgsin@=ma,

Fy—F sind—mgcosd=0.
Using f; = w4 F'y, these equations lead to

a = (F/m)(cos@—py sinb) — g(sin B+, cosH),
which yields a = —2.1m/s?, or |a| = 2.1m/s, for z =
0.30, F = 50N and m = 5.0kg. (b) The direction of
a is down the plane. (c) With vy = +4.0m/s and v
=0, Eq. 2-16 gives
Ax = —4.0%/[(2)(-2.1)] = 3.9 (m).
(d) We expect i, not 14; otherwise, an object start-
ed into motion would immediately start decelerat-
ing (before it gained any speed)! In the minimal
expectation case, where g = 0.30, the maximum
possible (downhill) static friction is, using Eq. 6-1,
Ssmax = s Fy = 4 (F sin@+ mg cos0),
which turns out to be 21 N. But in order to have no
acceleration along the x axis, we must have
fs=F cos@—mg sind= 10 N.

(the fact that this is positive
reinforces our suspicion that f;
points downhill). Since the f;
needed to remain at rest is
less than f; ... then it stays
at that location.

Ex.3-2, Pb. 6-25.

F.= Fcos@

( jyang@mail.ntou.edu.tw, Thanks.)
° , Discovery Channel
friction, / ; frictional force, ; negative
lift, ; static/kinetic frictional force, / ;

coefficient of static friction, ; coefficient of

kinetic friction, ; drag force, ; drag
coefficient, ; effective cross-sectional area,

; terminal speed, ; uniform circular

motion, ; centripetal acceleration/force,
/ ; center of curvature, ; banked,
; bobsled, ; skydiving, ; spread
eagle, (
); Dare Devil, ;
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